Reinforcement Learning Double DQN for Chip-Level Synthesis of Paper-Based Digital Microfluidic Biochips

生物芯片 强化学习 微流控 计算机科学 微流控芯片 炸薯条 钢筋 实验室晶片 纳米技术 人工智能 工程类 材料科学 电信 结构工程
作者
Katherine Shu-Min Li,Fang-Chi Wu,Jian-De Li,Sying-Jyan Wang
出处
期刊:IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems [Institute of Electrical and Electronics Engineers]
卷期号:43 (8): 2465-2478
标识
DOI:10.1109/tcad.2024.3370652
摘要

Digital microfluidic biochips (DMFBs) can effectively reduce the cost of biochemical analysis and improve experimental efficiency, as they are easy to carry, use fewer reagent samples and have high precision. Paper-Based Digital Microfluidic Biochips (PB-DMFBs) are a branch of microfluidic biochips. This technology prints ink containing carbon nanotubes on special paper to form electrodes and control wire, so the manufacturing cost and time required are far less than the traditional digital microfluidic chip, in which droplets move between two control layers. However, the chip-level synthesis of PB-DMFBs becomes more challenging because all circuits of PBDMFBs are printed on a single paper layer. Furthermore, current PB-DMFB designs must address various issues, including fabrication cost, reliability, and safety. Therefore, a more flexible method for the chip-level synthesis of PB-DMFBs is needed. In this paper, we propose a chip-level synthesis method of PB-DMFBs based on reinforcement learning. Double Deep Q-learning Networks (Double DQN) are suitable for agents to select actions and estimate actions, and then obtain optimized comprehensive results. Experimental results demonstrate that the proposed method is not only effective and efficient for chip-level synthesis, but also scalable to applications with high reliability and safety requirements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得30
2秒前
科目三应助科研通管家采纳,获得10
2秒前
SYLH应助科研通管家采纳,获得10
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
大腚疯猪应助科研通管家采纳,获得30
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
SYLH应助科研通管家采纳,获得10
3秒前
3秒前
momo末流主应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
6秒前
11秒前
14秒前
可爱邓邓完成签到 ,获得积分10
15秒前
核桃发布了新的文献求助10
17秒前
17秒前
魏123456发布了新的文献求助10
22秒前
忐忑的雪糕完成签到 ,获得积分0
23秒前
Eve完成签到,获得积分10
23秒前
luster完成签到 ,获得积分10
25秒前
26秒前
28秒前
Lei发布了新的文献求助10
31秒前
一二发布了新的文献求助10
32秒前
科研通AI2S应助顺熙采纳,获得10
33秒前
WSY发布了新的文献求助10
33秒前
何YI发布了新的文献求助10
33秒前
大模型应助Lyn采纳,获得10
34秒前
34秒前
平湖凉月完成签到,获得积分10
34秒前
魏123456完成签到,获得积分20
35秒前
核桃发布了新的文献求助10
35秒前
sy发布了新的文献求助10
36秒前
传奇3应助迅速的八宝粥采纳,获得10
36秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802646
求助须知:如何正确求助?哪些是违规求助? 3348268
关于积分的说明 10337419
捐赠科研通 3064257
什么是DOI,文献DOI怎么找? 1682495
邀请新用户注册赠送积分活动 808168
科研通“疑难数据库(出版商)”最低求助积分说明 764013