The interaction of digital economy, artificial intelligence and sports industry development --based on China PVAR analysis of provincial panel data

中国 大数据 数字经济 面板数据 业务 经济 数据科学 工程类 计算机科学 政治学 经济 数据挖掘 计量经济学 万维网 法学
作者
Laibing Lu,Yang Shao-xiong,Qiuying Li
出处
期刊:Heliyon [Elsevier]
卷期号:10 (4): e25688-e25688 被引量:4
标识
DOI:10.1016/j.heliyon.2024.e25688
摘要

Under the leadership of China's "dual-carbon" goal, clarifying the interaction between the digital economy, artificial intelligence, and the sports industry is an important guarantee to promote the structural upgrading of China's sports industry and achieve low-carbon development. Therefore, a panel vector autoregression (PVAR) model is constructed based on the panel data of 15 provinces in China from 2014 to 2020 to investigate the interaction between the three. It is found that (1) every 1-unit increase in the level of digital economy in the lagged period can cause a 0.008-unit increase in the level of AI application in the current period at the 10% significance level, i.e., the digital economy has a short-term and weakly facilitating effect on AI. (2) Every 1 unit of digital economy level in the lagging period can cause 9.539 units of value added to the sports industry at a 1% significance level. That is, the digital economy has a short-term but strong enhancing effect on the development of the sports industry. (3) Their internal driving force mainly drives the development of digital economy and artificial intelligence, and the self-contribution rate is 72.7% and 91.5% respectively. In contrast, the self-driving force of the sports industry is weaker, and the self-contribution rate is only 68.2%. (4) The contribution rate of the digital economy and artificial intelligence to the development of the sports industry is 12.3% and 19.6% respectively, i.e., the sports industry is more affected by the degree of application of artificial intelligence than the level of development of digital economy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈哈发布了新的文献求助10
刚刚
1秒前
1秒前
Perry应助搞怪的芙采纳,获得10
1秒前
2秒前
ccccc发布了新的文献求助10
2秒前
希望天下0贩的0应助久念采纳,获得10
3秒前
蔚然然发布了新的文献求助10
3秒前
bkagyin应助勤奋的远锋采纳,获得10
3秒前
AIwxq发布了新的文献求助10
4秒前
彭于晏应助Tony12采纳,获得10
4秒前
5秒前
AIA发布了新的文献求助10
5秒前
6秒前
大婷子发布了新的文献求助10
7秒前
7秒前
DDDD发布了新的文献求助10
8秒前
8秒前
Lucas应助沙士还是沙事多采纳,获得10
8秒前
8秒前
8秒前
刻苦成风完成签到,获得积分10
8秒前
酷波er应助香蕉梨愁采纳,获得30
9秒前
登登完成签到,获得积分10
10秒前
10秒前
10秒前
ln1111发布了新的文献求助10
11秒前
Gengar发布了新的文献求助10
11秒前
张佳乐完成签到 ,获得积分10
11秒前
Christina完成签到,获得积分10
12秒前
Spike完成签到,获得积分10
12秒前
墨墨发布了新的文献求助10
12秒前
12秒前
12秒前
蟹黄发布了新的文献求助10
13秒前
13秒前
ShellyMaya完成签到 ,获得积分10
13秒前
13秒前
13秒前
xiaobao发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468475
求助须知:如何正确求助?哪些是违规求助? 4571886
关于积分的说明 14332538
捐赠科研通 4498526
什么是DOI,文献DOI怎么找? 2464602
邀请新用户注册赠送积分活动 1453226
关于科研通互助平台的介绍 1427841