N and OH-Immobilized Cu3 Clusters In Situ Reconstructed from Single-Metal Sites for Efficient CO2 Electromethanation in Bicontinuous Mesochannels

化学 催化作用 甲烷 多相催化 吸附 碳纤维 化学工程 原位 纳米技术 物理化学 有机化学 材料科学 复合数 工程类 复合材料
作者
Fuping Pan,Lingzhe Fang,Boyang Li,Xiaoxuan Yang,Thomas O’Carroll,Haoyang Li,Tao Li,Guofeng Wang,Kai‐Jie Chen,Gang Wu
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
标识
DOI:10.1021/jacs.3c10524
摘要

Cu-based catalysts hold promise for electrifying CO2 to produce methane, an extensively used fuel. However, the activity and selectivity remain insufficient due to the lack of catalyst design principles to steer complex CO2 reduction pathways. Herein, we develop a concept to design carbon-supported Cu catalysts by regulating Cu active sites’ atomic-scale structures and engineering the carbon support’s mesoscale architecture. This aims to provide a favorable local reaction microenvironment for a selective CO2 reduction pathway to methane. In situ X-ray absorption and Raman spectroscopy analyses reveal the dynamic reconstruction of nitrogen and hydroxyl-immobilized Cu3 (N,OH-Cu3) clusters derived from atomically dispersed Cu–N3 sites under realistic CO2 reduction conditions. The N,OH-Cu3 sites possess moderate *CO adsorption affinity and a low barrier for *CO hydrogenation, enabling intrinsically selective CO2-to-CH4 reduction compared to the C–C coupling with a high energy barrier. Importantly, a block copolymer-derived carbon fiber support with interconnected mesopores is constructed. The unique long-range mesochannels offer an H2O-deficient microenvironment and prolong the transport path for the CO intermediate, which could suppress the hydrogen evolution reaction and favor deep CO2 reduction toward methane formation. Thus, the newly developed catalyst consisting of in situ constructed N,OH-Cu3 active sites embedded into bicontinuous carbon mesochannels achieved an unprecedented Faradaic efficiency of 74.2% for the CO2 reduction to methane at an industry-level current density of 300 mA cm–2. This work explores effective concepts for steering desirable reaction pathways in complex interfacial catalytic systems via modulating active site structures at the atomic level and engineering pore architectures of supports on the mesoscale to create favorable microenvironments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
和谐保温杯完成签到,获得积分10
4秒前
骆豪发布了新的文献求助10
4秒前
Yaang驳回了Ninger应助
5秒前
万能图书馆应助英仙座采纳,获得10
5秒前
鲤鱼纸鹤发布了新的文献求助10
6秒前
文刀完成签到,获得积分10
6秒前
拾贰完成签到,获得积分20
6秒前
laomuxile发布了新的文献求助10
7秒前
Xiaopu发布了新的文献求助200
10秒前
王卓完成签到,获得积分10
11秒前
12秒前
12秒前
科研通AI2S应助刻苦小鸭子采纳,获得10
13秒前
13秒前
完美世界应助学术渣采纳,获得10
14秒前
小蘑菇应助知诵采纳,获得10
14秒前
14秒前
柯一一应助优秀爆米花采纳,获得10
15秒前
15秒前
典雅盼烟发布了新的文献求助10
16秒前
泡泡发布了新的文献求助10
16秒前
等待彩虹发布了新的文献求助20
16秒前
小王完成签到,获得积分20
16秒前
123完成签到,获得积分10
17秒前
cctv18应助Irshat采纳,获得10
17秒前
223311发布了新的文献求助10
17秒前
oe完成签到 ,获得积分10
17秒前
杰帅完成签到,获得积分10
18秒前
宜一完成签到,获得积分20
18秒前
海洋发布了新的文献求助10
19秒前
20秒前
21秒前
leizi完成签到 ,获得积分10
22秒前
管飞风发布了新的文献求助10
22秒前
隐形曼青应助LingYun采纳,获得10
22秒前
打打应助小王采纳,获得10
22秒前
胡国伟完成签到,获得积分10
23秒前
Yaang给Yaang的求助进行了留言
23秒前
高分求助中
Thermodynamic data for steelmaking 3000
Teaching Social and Emotional Learning in Physical Education 900
Counseling With Immigrants, Refugees, and Their Families From Social Justice Perspectives pages 800
藍からはじまる蛍光性トリプタンスリン研究 400
Cardiology: Board and Certification Review 400
[Lambert-Eaton syndrome without calcium channel autoantibodies] 340
New Words, New Worlds: Reconceptualising Social and Cultural Geography 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2363388
求助须知:如何正确求助?哪些是违规求助? 2071640
关于积分的说明 5177200
捐赠科研通 1799856
什么是DOI,文献DOI怎么找? 898620
版权声明 557810
科研通“疑难数据库(出版商)”最低求助积分说明 479662