N and OH-Immobilized Cu3 Clusters In Situ Reconstructed from Single-Metal Sites for Efficient CO2 Electromethanation in Bicontinuous Mesochannels

化学 催化作用 甲烷 多相催化 吸附 碳纤维 化学工程 原位 纳米技术 物理化学 有机化学 材料科学 复合数 工程类 复合材料
作者
Fuping Pan,Lingzhe Fang,Boyang Li,Xiaoxuan Yang,Thomas O’Carroll,Haoyang Li,Tao Li,Guofeng Wang,Kai‐Jie Chen,Gang Wu
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:146 (2): 1423-1434 被引量:35
标识
DOI:10.1021/jacs.3c10524
摘要

Cu-based catalysts hold promise for electrifying CO2 to produce methane, an extensively used fuel. However, the activity and selectivity remain insufficient due to the lack of catalyst design principles to steer complex CO2 reduction pathways. Herein, we develop a concept to design carbon-supported Cu catalysts by regulating Cu active sites' atomic-scale structures and engineering the carbon support's mesoscale architecture. This aims to provide a favorable local reaction microenvironment for a selective CO2 reduction pathway to methane. In situ X-ray absorption and Raman spectroscopy analyses reveal the dynamic reconstruction of nitrogen and hydroxyl-immobilized Cu3 (N,OH-Cu3) clusters derived from atomically dispersed Cu–N3 sites under realistic CO2 reduction conditions. The N,OH-Cu3 sites possess moderate *CO adsorption affinity and a low barrier for *CO hydrogenation, enabling intrinsically selective CO2-to-CH4 reduction compared to the C–C coupling with a high energy barrier. Importantly, a block copolymer-derived carbon fiber support with interconnected mesopores is constructed. The unique long-range mesochannels offer an H2O-deficient microenvironment and prolong the transport path for the CO intermediate, which could suppress the hydrogen evolution reaction and favor deep CO2 reduction toward methane formation. Thus, the newly developed catalyst consisting of in situ constructed N,OH-Cu3 active sites embedded into bicontinuous carbon mesochannels achieved an unprecedented Faradaic efficiency of 74.2% for the CO2 reduction to methane at an industry-level current density of 300 mA cm–2. This work explores effective concepts for steering desirable reaction pathways in complex interfacial catalytic systems via modulating active site structures at the atomic level and engineering pore architectures of supports on the mesoscale to create favorable microenvironments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牛牛完成签到,获得积分10
刚刚
djf发布了新的文献求助10
2秒前
63完成签到,获得积分20
3秒前
华仔应助西西采纳,获得10
3秒前
lxd完成签到,获得积分10
4秒前
4秒前
Zzzzccc完成签到 ,获得积分10
8秒前
8秒前
ZJ发布了新的文献求助10
9秒前
ls完成签到,获得积分10
10秒前
10秒前
星辰大海应助周钰波采纳,获得20
11秒前
西西完成签到,获得积分10
12秒前
13秒前
14秒前
西西发布了新的文献求助10
14秒前
隐形曼青应助笙笙采纳,获得10
15秒前
ZJ完成签到,获得积分10
16秒前
prim发布了新的文献求助10
17秒前
归尘应助sywkamw采纳,获得30
17秒前
Singularity应助夹心吉吉采纳,获得10
18秒前
18秒前
20秒前
田様应助坦率的傲芙采纳,获得10
21秒前
机灵一兰完成签到 ,获得积分10
21秒前
李爱国应助美好鞅采纳,获得10
22秒前
科研通AI2S应助cis2014采纳,获得10
23秒前
24秒前
李新宇完成签到,获得积分20
26秒前
26秒前
FightingW完成签到,获得积分10
28秒前
传奇3应助稳重奇异果采纳,获得10
29秒前
solidcon发布了新的文献求助10
30秒前
慕青应助cc采纳,获得10
32秒前
37秒前
37秒前
37秒前
38秒前
合适怀亦完成签到 ,获得积分10
39秒前
天真千凡给天真千凡的求助进行了留言
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776521
求助须知:如何正确求助?哪些是违规求助? 3322010
关于积分的说明 10208485
捐赠科研通 3037297
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797596
科研通“疑难数据库(出版商)”最低求助积分说明 757872