Advances in neuromorphic computing: Expanding horizons for AI development through novel artificial neurons and in-sensor computing

神经形态工程学 计算机科学 油藏计算 新视野 计算机体系结构 人工智能 人工神经网络 物理 天文 循环神经网络 航天器
作者
Yubo 玉波 Yang 杨,Jizhe 吉哲 Zhao 赵,Yinjie 胤洁 Liu 刘,Xiayang 夏扬 Hua 华,Tianrui 天睿 Wang 王,Jiyuan 纪元 Zheng 郑,Zhibiao 智彪 Hao 郝,Bing 兵 Xiong 熊,Changzheng 长征 Sun 孙,Yanjun 彦军 Han 韩,Jian 健 Wang 王,Hongtao 洪涛 Li 李,Lai 莱 Wang 汪,Yi 毅 Luo 罗
出处
期刊:Chinese Physics B [IOP Publishing]
卷期号:33 (3): 030702-030702 被引量:4
标识
DOI:10.1088/1674-1056/ad1c58
摘要

AI development has brought great success to upgrading the information age. At the same time, the large-scale artificial neural network for building AI systems is thirsty for computing power, which is barely satisfied by the conventional computing hardware. In the post-Moore era, the increase in computing power brought about by the size reduction of CMOS in very large-scale integrated circuits (VLSIC) is challenging to meet the growing demand for AI computing power. To address the issue, technical approaches like neuromorphic computing attract great attention because of their feature of breaking Von-Neumann architecture, and dealing with AI algorithms much more parallelly and energy efficiently. Inspired by the human neural network architecture, neuromorphic computing hardware is brought to life based on novel artificial neurons constructed by new materials or devices. Although it is relatively difficult to deploy a training process in the neuromorphic architecture like spiking neural network (SNN), the development in this field has incubated promising technologies like in-sensor computing, which brings new opportunities for multidisciplinary research, including the field of optoelectronic materials and devices, artificial neural networks, and microelectronics integration technology. The vision chips based on the architectures could reduce unnecessary data transfer and realize fast and energy-efficient visual cognitive processing. This paper reviews firstly the architectures and algorithms of SNN, and artificial neuron devices supporting neuromorphic computing, then the recent progress of in-sensor computing vision chips, which all will promote the development of AI.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
壮观沉鱼发布了新的文献求助10
刚刚
刚刚
刚刚
刚刚
光亮烤鸡发布了新的文献求助10
刚刚
光亮烤鸡发布了新的文献求助10
刚刚
hu发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
传奇3应助蔡蔡采纳,获得10
2秒前
3秒前
4秒前
脑洞疼应助科研通管家采纳,获得30
4秒前
爆米花应助科研通管家采纳,获得20
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
赵一发布了新的文献求助30
4秒前
orixero应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
5秒前
迷人的跳跳糖完成签到,获得积分10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
JamesPei应助科研通管家采纳,获得10
5秒前
情怀应助怡然人生采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
5秒前
orixero应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
今后应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
无极微光应助科研通管家采纳,获得20
5秒前
风中冰香应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
www发布了新的文献求助30
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546309
求助须知:如何正确求助?哪些是违规求助? 4632193
关于积分的说明 14625447
捐赠科研通 4573861
什么是DOI,文献DOI怎么找? 2507851
邀请新用户注册赠送积分活动 1484503
关于科研通互助平台的介绍 1455714