超细纤维
微流控
材料科学
生物医学工程
纺纱
自愈水凝胶
脐静脉
微通道
组织工程
纳米技术
明胶
体外
复合材料
化学
高分子化学
工程类
生物化学
作者
Jingyun Ma,Wei Li,Lingling Tian,Xinghua Gao
摘要
Microfluidic spinning, which has recently emerged as an important approach to processing hydrogels, can handle the flow in the fluid channel and generate microfibers in a controlled and mild manner, and therefore, it is suitable for cell loading, long-term culture, and tissue engineering. In this study, we utilized three-dimensional (3D) printing technology to prepare microfluidic chip templates with different microchannel heights in a one-step manner and obtained microfluidic spinning and microfiber assembly microchips. Hollow calcium alginate (CaA)/gelatin methacrylate (GelMA) composite microfibers were successfully prepared using a microfluidic spinning microchip combined with different fluid-injection strategies. The obtained hollow microfibers had one, two, or three lumens, and different inclusions could be added to the fiber walls. Hollow microfibers with a single lumen were used to load human umbilical vein endothelial cells (HUVECs) and exhibited good cell compatibility and barrier functions. We constructed a neural model based on the HUVEC-loaded hollow microfibers using a customized 3D printer. Using this established neural model, we induced the neural differentiation of rat adrenal medullary pheochromocytoma cells (PC12) using nerve growth factor. Axonal length, tubulin expression, and related gene (GAP-43 and TH) expression in PC12 cells were assessed. The current findings underscore the potential of utilizing microfluidic spinning in in vitro blood–brain barrier simulation, neuropharmaceutical and toxin evaluation, and brain-on-a-chip construction.
科研通智能强力驱动
Strongly Powered by AbleSci AI