已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Spatiotemporal wave forecast with transformer-based network: A case study for the northwestern Pacific Ocean

均方误差 有效波高 浮标 气象学 风浪 波高 环境科学 风浪模型 气候学 计算机科学 风速 地质学 数学 统计 地理 海洋学
作者
Yong Liu,Wenfang Lu,Dong Wang,Zhigang Lai,Chao Ying,Xinwen Li,Ying Han,Zhifeng Wang,Changming Dong
出处
期刊:Ocean Modelling [Elsevier BV]
卷期号:188: 102323-102323 被引量:8
标识
DOI:10.1016/j.ocemod.2024.102323
摘要

The forecast of ocean waves relies mostly on complex dynamic-based models, which are expensive in computation and demanding in professional skills to run. Diverse deep learning methods have been proposed to tackle this problem, yet the architecture of Transformer (i.e., the self-attention) was seldom tested for such a learning problem. To bridge this gap, we apply a state-of-the-art spatiotemporal attention network, the EarthFormer, and apply it for wave forecasting in the northwestern Pacific. To train and validate the EarthFormer, the fifth-generation atmospheric reanalysis dataset (ERA5) from the European Centre for Medium-Range Weather Forecast product with hourly resolution was adopted, with the sequence of wind as the input and the three key variables (i.e., significance wave height, mean wave period, and mean wave direction) of ocean waves as the output. The prediction can generate accurate wave forecasts up to 12 h ahead, with considerably low root-mean-squared error (RMSE). Overall, the predicted waves resulted in RMSE for the significance wave height of 0.22 m, for the mean wave period of 0.68 s, and for the mean wave direction of 0.28 rad. These wave height and wave period values are ∼13 % and ∼10 % of corresponding spatiotemporal mean values. The EarthFormer outperformed a popular spatiotemporal forecast network, the ConvLSTM, in our problem. For site-wise forecasts against buoy observations near Taiwan, the EarthFormer forecast also presents considerably high accuracy comparable to the ERA5 forecasts. This method can therefore provide an accurate and prompt way to forecast the large-scale distribution of waves to better model the marine dynamic and its climate effects, which could have a high potential for disaster prevention and climate modeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助sensAn采纳,获得10
1秒前
尼玛完成签到,获得积分10
6秒前
9秒前
今后应助武雨寒采纳,获得10
10秒前
fin完成签到 ,获得积分10
10秒前
Hello应助leslie采纳,获得10
13秒前
传奇3应助犹豫冰淇淋采纳,获得10
15秒前
15秒前
奈何应助kimon采纳,获得10
17秒前
sum完成签到 ,获得积分20
18秒前
顺利的寒云完成签到 ,获得积分10
18秒前
酷酷的汉堡完成签到,获得积分10
20秒前
科研通AI5应助Yangzx采纳,获得10
20秒前
TSWAKS发布了新的文献求助10
21秒前
23秒前
24秒前
leslie发布了新的文献求助10
28秒前
武雨寒发布了新的文献求助10
29秒前
30秒前
30秒前
小二郎应助日日是春日采纳,获得10
31秒前
李健的小迷弟应助张jy采纳,获得10
34秒前
小蘑菇应助胡诗剑采纳,获得10
35秒前
38秒前
40秒前
40秒前
43秒前
小白又鹏发布了新的文献求助10
43秒前
宴之思完成签到,获得积分10
44秒前
44秒前
44秒前
45秒前
Yangzx发布了新的文献求助10
46秒前
FashionBoy应助尛森采纳,获得10
46秒前
Dream完成签到,获得积分10
47秒前
47秒前
张jy发布了新的文献求助10
48秒前
2568269431发布了新的文献求助10
48秒前
sensAn发布了新的文献求助10
48秒前
阳光飞槐完成签到,获得积分10
49秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800731
求助须知:如何正确求助?哪些是违规求助? 3346255
关于积分的说明 10328616
捐赠科研通 3062701
什么是DOI,文献DOI怎么找? 1681157
邀请新用户注册赠送积分活动 807369
科研通“疑难数据库(出版商)”最低求助积分说明 763646