Investigating hermetic reciprocating compressor performance by using various machine learning methods

冷却能力 气体压缩机 往复式压缩机 蒸汽压缩制冷 容积效率 往复运动 高效能源利用 计算机科学 材料科学 控制理论(社会学) 汽车工程 机械工程 工程类 人工智能 制冷剂 电气工程 控制(管理)
作者
Aykut Bacak,Andaç Batur Çolak,Ahmet Selim Dalkılıç
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science [SAGE Publishing]
卷期号:238 (11): 5369-5384 被引量:3
标识
DOI:10.1177/09544062231213276
摘要

Due to their durability and efficiency, hermetic reciprocating compressors (HRCs) are used in refrigeration and air conditioning. Compressor performance and reliability concerns reduce system efficiency and raise maintenance costs. Machine learning (ML) is being used to improve hermetic reciprocating compressor performance, reliability, and energy economy. ML is used in hermetic reciprocating compressors for issue identification, performance improvement, predictive maintenance, and energy management. This research compared HRC performance factors such as mass flow rate, cooling capacity, compression power, coefficient of performance, exhaust line losses, and volumetric efficiency. Simple regression, probabilistic neural network, gradient boosted, polynomial regression, and random forest (RF) were used to examine and evaluate these parameters as outputs. Over three cycles, the Fluid-Structure Interaction (FSI) approach assessed compressor performance parameters. For compressor speeds of 1300, 2100, and 3000 rpm, mass flow rate, compression power, cooling efficiency coefficient, and exhaust line energy losses varied by 10%, 4%, 5%, and 6%. To gather ML algorithm inputs, the research used experimental, fluid-structure interaction, and ML methodologies. Experimental and FSI approaches produced 108 data points. These data points were randomly assigned, with 70% for learning and 30% for prediction. The mean convergence criterion for mass flow rate, cooling capacity, compression power, cooling efficiency coefficient, exhaust line energy losses, and volumetric efficiency parameters was 0.9966, 0.9969, 0.9572, 0.0561, 0.9925, and 0.4640 for all ML methods. Simple regression, probabilistic neural networks, gradient boosted, polynomial regression, and RF convergence criteria were 0.8978, 0.9999, 0.6016, 0.4439, and 0.7761.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿索给阿索的求助进行了留言
刚刚
2秒前
4秒前
5秒前
6秒前
7秒前
Chawee发布了新的文献求助10
9秒前
清晨的小鹿关注了科研通微信公众号
9秒前
不知道发布了新的文献求助10
10秒前
逍遥完成签到,获得积分10
13秒前
深情安青应助爱吃蒸蛋采纳,获得10
13秒前
打打应助tangz采纳,获得10
19秒前
Chawee完成签到,获得积分10
19秒前
19秒前
小轩窗zst发布了新的文献求助10
21秒前
搜集达人应助LVMIN采纳,获得10
22秒前
24秒前
爱吃蒸蛋发布了新的文献求助10
25秒前
大模型应助Zack采纳,获得10
28秒前
29秒前
忘仔完成签到,获得积分10
32秒前
33秒前
缓慢小绵羊完成签到 ,获得积分10
35秒前
文G完成签到,获得积分20
38秒前
jay完成签到 ,获得积分10
47秒前
传奇3应助okl采纳,获得10
50秒前
51秒前
源子完成签到 ,获得积分10
53秒前
勤劳的忆寒完成签到,获得积分10
1分钟前
西瓜皮完成签到 ,获得积分10
1分钟前
1分钟前
大模型应助科研通管家采纳,获得10
1分钟前
李健应助科研通管家采纳,获得10
1分钟前
1分钟前
顾矜应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
1分钟前
搜集达人应助科研通管家采纳,获得10
1分钟前
华仔应助科研通管家采纳,获得10
1分钟前
皮肤科应助科研通管家采纳,获得30
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
基于CZT探测器的128通道能量时间前端读出ASIC设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777104
求助须知:如何正确求助?哪些是违规求助? 3322512
关于积分的说明 10210474
捐赠科研通 3037840
什么是DOI,文献DOI怎么找? 1666936
邀请新用户注册赠送积分活动 797849
科研通“疑难数据库(出版商)”最低求助积分说明 758044