Multi-label classification for acoustic bird species detection using transfer learning approach

学习迁移 计算机科学 生物声学 提取器 人工智能 录音和复制 剪裁(形态学) 传输(计算) 特征(语言学) 机器学习 模式识别(心理学) 电信 语言学 哲学 物理 工艺工程 并行计算 声学 工程类
作者
S. Bhuvaneswari,M. Jagadeesh,V. Subramaniyaswamy
出处
期刊:Ecological Informatics [Elsevier BV]
卷期号:80: 102471-102471 被引量:12
标识
DOI:10.1016/j.ecoinf.2024.102471
摘要

As part of ornithology, bird species classification is vital to understanding species distribution, habitat requirements and environmental changes that affect bird populations. It is possible for ornithologists to assess the health of a certain habitat by tracking changes in bird species distributions. This work has extended an efficient transfer learning technique for labelling and classifying multiple bird species from real-time audio recordings. For this purpose, Wav2vec is fine-tuned using the back propagation technique, which makes the feature extractor more effective in learning each bird's pitch and other sound characteristics. To perform the task, each audio recording has been clipped as chunks from the overlapping audio to determine multi-labels from it. Through the application of transfer learning, the features of audio recordings have been automatically extracted for classification and fed to a feed-forward network. Subsequently, probabilities associated with each audio segment is aggregated through the clipping approach to represent multiple species of bird call. These probability scores are then used to determine the presence of predominant bird species in the audio recording for multi-labelling. The proposed Wav2vec demonstrates remarkable performance, achieving an F1-score of 0.89 using the Xeno-Canto dataset in which outperforming other multi-label classifiers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猪猪hero应助易安采纳,获得10
1秒前
silicon发布了新的文献求助10
1秒前
背后的雪巧完成签到,获得积分10
1秒前
SciGPT应助虚心的醉蓝采纳,获得10
2秒前
SYLH应助爱科研的小成采纳,获得10
3秒前
4秒前
科研通AI2S应助deng203采纳,获得10
4秒前
坦率惊蛰完成签到,获得积分10
5秒前
求是发布了新的文献求助10
5秒前
科研通AI5应助小苏打采纳,获得10
6秒前
7秒前
7秒前
8秒前
10秒前
策略发布了新的文献求助10
10秒前
11秒前
杨清雲关注了科研通微信公众号
12秒前
科研通AI2S应助制冷剂采纳,获得10
13秒前
CodeCraft应助缥缈的玉米采纳,获得10
15秒前
甜甜玫瑰应助叭叭采纳,获得10
15秒前
jiabao王发布了新的文献求助10
15秒前
15秒前
17秒前
17秒前
英姑应助拉拉采纳,获得10
17秒前
18秒前
打工人完成签到,获得积分20
19秒前
20秒前
21秒前
21秒前
simon完成签到,获得积分10
21秒前
hinini完成签到,获得积分10
21秒前
22秒前
打打应助whyzz采纳,获得10
22秒前
yiyiluo发布了新的文献求助10
22秒前
ZhouYW应助shoplog采纳,获得10
22秒前
23秒前
Finch11完成签到 ,获得积分10
23秒前
优秀傲松发布了新的文献求助10
24秒前
moonstar发布了新的文献求助10
26秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3807036
求助须知:如何正确求助?哪些是违规求助? 3351803
关于积分的说明 10355623
捐赠科研通 3067759
什么是DOI,文献DOI怎么找? 1684707
邀请新用户注册赠送积分活动 809899
科研通“疑难数据库(出版商)”最低求助积分说明 765734