Cross-Scenario Device-Free Gesture Recognition Based On Parallel Adversarial Network

计算机科学 手势 相似性(几何) 保险丝(电气) 无线 钥匙(锁) 对抗制 无线网络 人工智能 特征提取 手势识别 深度学习 特征(语言学) 机器学习 电信 语言学 哲学 计算机安全 电气工程 图像(数学) 工程类
作者
Jie Wang,Shenzhou Zhao,Yingying Lv,Xiaokai Liu,Qinghua Gao,Miao Pan
出处
期刊:IEEE Transactions on Cognitive Communications and Networking [Institute of Electrical and Electronics Engineers]
卷期号:10 (3): 893-904 被引量:1
标识
DOI:10.1109/tccn.2023.3345869
摘要

Wireless sensing has garnered significant attention as a key technique for 6G, as it empowers wireless networks with sensing capabilities. One emerging technology in this domain is device-free gesture recognition (DFGR), which enables the recognition of human gestures by analyzing the influence they exert on the surrounding wireless signals. Deep network based DFGR systems have demonstrated impressive performance thanks to the feature extraction capabilities of deep networks. However, these systems encounter significant performance degradation in cross-scenario conditions, wherein it becomes challenging, and sometimes even impossible, to extract common features that are unrelated to specific working scenarios, particularly when there are substantial differences among the scenarios. To solve this problem, in this paper, we propose and design a parallel adversarial network. Our key idea is to extract common features between the target scenario and each source scenario separately and parallelly, so that we can achieve common features even when the difference between the scenarios is quite large. Specifically, we design adversarial sub-networks for each pair of target and source scenarios to extract their common features and make coarse recognition, develop a similarity evaluation sub-network to estimate the similarity between the target scenario and every source scenario, and fuse the coarse results by leveraging similarity scores to accomplish accurate recognition. We conducted extensive evaluations on two mmWave testbeds and the publicly available Widar3.0 WiFi dataset, and confirmed the effectiveness of the proposed network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伶俐如南完成签到 ,获得积分10
5秒前
6秒前
7秒前
jiajia发布了新的文献求助10
10秒前
11秒前
11秒前
甜甜纲手发布了新的文献求助10
11秒前
13秒前
13秒前
清水胖子发布了新的文献求助10
15秒前
李健的小迷弟应助青雉采纳,获得10
15秒前
宋德宇发布了新的文献求助20
16秒前
16秒前
鳗鱼灵安完成签到,获得积分10
19秒前
JamesPei应助清水胖子采纳,获得10
22秒前
24秒前
26秒前
Lucas应助浅暖采纳,获得10
26秒前
希望天下0贩的0应助lewis_xl采纳,获得10
27秒前
淡定井完成签到 ,获得积分10
31秒前
我是老大应助nnnn采纳,获得10
34秒前
36秒前
bkagyin应助蔡继海采纳,获得10
38秒前
39秒前
Voskov发布了新的文献求助10
41秒前
HZY发布了新的文献求助10
43秒前
44秒前
科研通AI2S应助科研通管家采纳,获得10
46秒前
李爱国应助科研通管家采纳,获得10
46秒前
Leif应助科研通管家采纳,获得10
46秒前
蔡继海发布了新的文献求助10
49秒前
53秒前
57秒前
天天好心覃完成签到 ,获得积分10
57秒前
飘飘完成签到 ,获得积分10
57秒前
sfsdfs发布了新的文献求助10
58秒前
Johnson完成签到 ,获得积分10
1分钟前
迅速的鹤完成签到,获得积分10
1分钟前
搜集达人应助sfsdfs采纳,获得10
1分钟前
淡淡冬瓜完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779792
求助须知:如何正确求助?哪些是违规求助? 3325264
关于积分的说明 10222076
捐赠科研通 3040419
什么是DOI,文献DOI怎么找? 1668788
邀请新用户注册赠送积分活动 798776
科研通“疑难数据库(出版商)”最低求助积分说明 758549