清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Influence of model complexity, training collinearity, collinearity shift, predictor novelty and their interactions on ecological forecasting

共线性 新颖性 计量经济学 统计 生态学 线性回归 广义线性模型 计算机科学 数学 心理学 生物 社会心理学
作者
Xin Chen,Ye Liang,Xiao Feng
出处
期刊:Global Ecology and Biogeography [Wiley]
卷期号:33 (3): 371-384 被引量:6
标识
DOI:10.1111/geb.13793
摘要

Abstract Aim Ecological forecasting is critical in understanding of ecological responses to climate change and is increasingly used in climate mitigation plans. The forecasts from correlative models can be challenged by model complexity, training collinearity, collinearity shift and novel conditions of predictors that are common during model extrapolation. The individual effect of these four factors has been investigated, but it is still unclear how these four factors interactively affect forecasting. To fill this gap, we conducted a comprehensive simulation experiment to quantify how the four factors interactively influence model forecasting. Location Simulated regions. Time Period Simulated scenarios. Methods We modelled three response variables commonly used in ecological forecasting following normal, Poisson and binomial distributions as a function of three functional relationships that represented model complexity under three levels of training collinearity using generalized linear models. By calculating prediction error under 3,780,000 testing scenarios, we partitioned its variance to model complexity, training collinearity, collinearity shift, predictor novelty and their interactions. Results We found that increased predictor novelty and collinearity shift degraded model performance, leading up to double prediction errors when a predictor's range increased by ~22% or when the correlation r between two predictors changed >~0.8 for the combination of high training collinearity and interaction functional relationship. Predictor novelty reduced the influence of collinearity shift on model performance, suggesting a negative interaction between them. This pattern was more pronounced under high model complexity and high training collinearity. Main Conclusions The accuracy of ecological forecasting using correlative models depends on model complexity, training collinearity, collinearity shift, predictor novelty and their interactions. Besides the consideration of parsimonious models and r of 0.7 in model training, our study further recommends a threshold of <22%–50% increased predictor range depending on training collinearity and/or <0.8 correlation change for making reliable forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英喆完成签到 ,获得积分10
17秒前
隐形曼青应助科研通管家采纳,获得10
2分钟前
2分钟前
cc发布了新的文献求助10
2分钟前
2分钟前
2分钟前
altair发布了新的文献求助10
2分钟前
Raunio完成签到,获得积分10
2分钟前
allrubbish完成签到,获得积分10
2分钟前
3分钟前
Chris完成签到 ,获得积分0
3分钟前
altair完成签到,获得积分10
4分钟前
vbnn完成签到 ,获得积分10
5分钟前
卑微学术人完成签到 ,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
6分钟前
阔达碧空发布了新的文献求助10
6分钟前
6分钟前
优秀剑愁完成签到 ,获得积分10
7分钟前
szhllf发布了新的文献求助10
9分钟前
搜集达人应助科研通管家采纳,获得10
10分钟前
阿巴完成签到 ,获得积分10
10分钟前
xun完成签到,获得积分20
11分钟前
xq完成签到,获得积分10
11分钟前
美好灵寒完成签到 ,获得积分10
11分钟前
sunwsmile完成签到 ,获得积分10
11分钟前
爱静静应助科研通管家采纳,获得10
12分钟前
12分钟前
科研通AI2S应助冷酷的夜雪采纳,获得10
12分钟前
13分钟前
naiyantang完成签到 ,获得积分10
13分钟前
爆米花应助大胆的冰淇淋采纳,获得10
13分钟前
科目三应助冷了个冷采纳,获得10
13分钟前
13分钟前
冷了个冷发布了新的文献求助10
13分钟前
lyy完成签到 ,获得积分10
13分钟前
乐乐应助冷了个冷采纳,获得10
14分钟前
激动的似狮完成签到,获得积分10
14分钟前
woxinyouyou完成签到,获得积分0
15分钟前
如歌完成签到,获得积分10
15分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
血液中补体及巨噬细胞对大肠杆菌噬菌体PNJ1809-09活性的影响 500
Methodology for the Human Sciences 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4330389
求助须知:如何正确求助?哪些是违规求助? 3843256
关于积分的说明 12007639
捐赠科研通 3483841
什么是DOI,文献DOI怎么找? 1911890
邀请新用户注册赠送积分活动 955878
科研通“疑难数据库(出版商)”最低求助积分说明 856700