A Credible and Fair Federated Learning Framework Based on Blockchain

计算机科学 可靠性 联合学习 任务(项目管理) 过程(计算) 计算机安全 可信赖性 块链 人工智能 管理 政治学 法学 经济 操作系统
作者
Leiming Chen,Dehai Zhao,Liping Tao,Kai Wang,Sibo Qiao,Xingjie Zeng,Chee Wei Tan
出处
期刊:IEEE transactions on artificial intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:22
标识
DOI:10.1109/tai.2024.3355362
摘要

Federated learning enables cooperative computation between multiple participants while protecting user privacy. Currently, federated learning algorithms assume that all participants are trustworthy and their systems are secure. However, the following problems arise in real-world scenarios: (1) Malicious clients disrupt federated learning through model poisoning and data poisoning attacks. Although some research has proposed secure aggregation methods to solve this problem, most methods have limitations. (2) Due to the variance in data quality and computational resources among participants, rewards cannot be distributed equally. Some clients also exhibit free-rider behavior, seeking to cheat the reward system and manipulate global models. Evaluating client contribution and distributing rewards also present challenges.

To address these challenges, we design a trustworthy federated framework to ensure secure computing throughout the federated task process. First, we propose a malicious model detection method for secure model aggregation. Then, we also propose a fair method of assessing contribution to identify client-side free-riding behavior. Lastly, we develop a computation process grounded in blockchain and smart contracts to guarantee the trustworthiness and fairness of federated tasks. To validate the performance of our framework, we simulate different types of client attacks and contribution evaluation scenarios on several open-source datasets. The experiments show that our framework guarantees the federated task's credibility and achieves fair client contribution evaluation.

最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qingxu发布了新的文献求助20
1秒前
2秒前
专注宛凝发布了新的文献求助10
3秒前
大个应助榴莲姑娘采纳,获得10
3秒前
5秒前
6秒前
8秒前
10秒前
NSS发布了新的文献求助10
11秒前
酷波er应助北方采纳,获得10
12秒前
13秒前
13秒前
13秒前
传奇3应助TT2022采纳,获得10
14秒前
xzhou2020完成签到,获得积分0
14秒前
大海发布了新的文献求助10
16秒前
tulips完成签到 ,获得积分10
16秒前
榴莲姑娘发布了新的文献求助10
17秒前
华仔应助影月采纳,获得10
17秒前
17秒前
una发布了新的文献求助10
18秒前
dali完成签到,获得积分10
18秒前
桐桐应助yyyyy采纳,获得10
19秒前
20秒前
21秒前
小二郎应助专注宛凝采纳,获得10
26秒前
26秒前
27秒前
微笑阿狸完成签到,获得积分10
27秒前
27秒前
彳亍1117应助syr采纳,获得10
28秒前
28秒前
29秒前
青棘发布了新的文献求助10
29秒前
30秒前
阿泽完成签到,获得积分10
31秒前
丘比特应助cyy采纳,获得10
31秒前
大海完成签到,获得积分10
31秒前
why完成签到,获得积分10
32秒前
科研通AI5应助Apollo采纳,获得10
32秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
血液中补体及巨噬细胞对大肠杆菌噬菌体PNJ1809-09活性的影响 500
Methodology for the Human Sciences 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4326912
求助须知:如何正确求助?哪些是违规求助? 3841015
关于积分的说明 12005526
捐赠科研通 3481999
什么是DOI,文献DOI怎么找? 1909918
邀请新用户注册赠送积分活动 954900
科研通“疑难数据库(出版商)”最低求助积分说明 855882