亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SPGNN-API: A Transferable Graph Neural Network for Attack Paths Identification and Autonomous Mitigation

计算机科学 计算机安全 最短路径问题 鉴定(生物学) 攻击模式 路径(计算) 图形 计算机网络 入侵检测系统 理论计算机科学 植物 生物
作者
Houssem Jmal,F. Ben Hmida,Nardine Basta,Muhammad Ikram,Mohamed Ali Kâafar,Michael Walker
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 1601-1613 被引量:4
标识
DOI:10.1109/tifs.2023.3338965
摘要

Attack paths are the potential chain of malicious activities an attacker performs to compromise network assets and acquire privileges through exploiting network vulnerabilities. Attack path analysis helps organizations to identify new/unknown chains of attack vectors exposing critical assets, as opposed to individual attack vectors in signature-based attack analysis. Timely identification of attack paths enables proactive mitigation of threats. Nevertheless, manual analysis of complex network configurations, vulnerabilities, and security events to identify attack paths is rarely feasible. This work proposes a novel transferable graph neural network-based model for shortest path identification. The shortest path, integrated with a novel holistic model for identifying potential network vulnerabilities interactions, is then utilized to detect network attack paths. Our framework automates the risk assessment of attack paths indicating the propensity of the paths to enable the compromise of highly-critical assets (e.g., databases). The proposed framework, named SPGNN-API, incorporates automated threat mitigation through a proactive timely tuning of the network firewall rules and Zero-Trust (ZT) policies to break critical attack paths and bolster cyber defenses. Our evaluation process is twofold; evaluating the performance of the shortest path identification and assessing the attack path detection accuracy. Our results show that SPGNN-API largely outperforms the baseline model for shortest path identification with an average accuracy ≥ 95% and successfully detects 100% of the potentially compromised assets, outperforming the attack graph baseline by 47%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ryan完成签到 ,获得积分10
9秒前
廖廖完成签到,获得积分10
11秒前
13秒前
GavinYi完成签到,获得积分10
15秒前
洁净的访文完成签到 ,获得积分10
15秒前
潇洒洙完成签到,获得积分10
16秒前
black_jade发布了新的文献求助10
19秒前
香蕉觅云应助潇洒洙采纳,获得10
21秒前
月子淇应助人皇采纳,获得10
21秒前
笑笑完成签到 ,获得积分10
21秒前
FFFFF完成签到 ,获得积分0
23秒前
李健的小迷弟应助rrrrrrry采纳,获得10
25秒前
浮游应助black_jade采纳,获得10
29秒前
丘比特应助black_jade采纳,获得10
30秒前
喜悦宫苴完成签到,获得积分10
32秒前
所所应助朝朝暮夕采纳,获得10
33秒前
山川日月完成签到,获得积分10
34秒前
小谢同学完成签到 ,获得积分10
37秒前
合一海盗完成签到,获得积分10
38秒前
科研通AI6应助科研通管家采纳,获得10
38秒前
科研通AI6应助科研通管家采纳,获得30
38秒前
43秒前
丘比特应助rrrrrrry采纳,获得10
44秒前
lmm完成签到 ,获得积分10
49秒前
Truman发布了新的文献求助10
49秒前
偷看星星完成签到 ,获得积分10
50秒前
52秒前
52秒前
jiajia完成签到 ,获得积分10
55秒前
57秒前
59秒前
彭于晏应助rrrrrrry采纳,获得10
1分钟前
1分钟前
1分钟前
俏皮的安萱完成签到 ,获得积分10
1分钟前
小小发布了新的文献求助50
1分钟前
1分钟前
1分钟前
Tsugo发布了新的文献求助10
1分钟前
传奇3应助囡囡采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
上海破产法庭破产实务案例精选(2019-2024) 500
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5476217
求助须知:如何正确求助?哪些是违规求助? 4577883
关于积分的说明 14363077
捐赠科研通 4505789
什么是DOI,文献DOI怎么找? 2468870
邀请新用户注册赠送积分活动 1456491
关于科研通互助平台的介绍 1430126