已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A multi-type ant colony optimization (MACO) method for optimal land use allocation in large areas

蚁群优化算法 模拟退火 遗传算法 计算机科学 数学优化 蚁群 运筹学 人工智能 数学
作者
Xiaoping Liu,Xia Li,Xun Shi,Kangning Huang,Yilun Liu
出处
期刊:International Journal of Geographical Information Science [Taylor & Francis]
卷期号:26 (7): 1325-1343 被引量:130
标识
DOI:10.1080/13658816.2011.635594
摘要

Abstract Optimizing land use allocation is a challenging task, as it involves multiple stakeholders with conflicting objectives. In addition, the solution space of the optimization grows exponentially as the size of the region and the resolution increase. This article presents a new ant colony optimization algorithm by incorporating multiple types of ants for solving complex multiple land use allocation problems. A spatial exchange mechanism is used to deal with competition between different types of land use allocation. This multi-type ant colony optimization optimal multiple land allocation (MACO-MLA) model was successfully applied to a case study in Panyu, Guangdong, China, a large region with an area of 1,454,285 cells. The proposed model took only about 25 minutes to find near-optimal solution in terms of overall suitability, compactness, and cost. Comparison indicates that MACO-MLA can yield better performances than the simulated annealing (SA) and the genetic algorithm (GA) methods. It is found that MACO-MLA has an improvement of the total utility value over SA and GA methods by 4.5% and 1.3%, respectively. The computation time of this proposed model amounts to only 2.6% and 12.3%, respectively, of that of the SA and GA methods. The experiments have demonstrated that the proposed model was an efficient and effective optimization technique for generating optimal land use patterns. Keywords: multi-type ant colony optimizationland use allocationoptimization Acknowledgements This study was supported by the National Natural Science Foundation of China (Grants No. 40901187 and 41171308) and the Key National Natural Science Foundation of China (Grant No. 40830532).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sigmaman完成签到 ,获得积分10
3秒前
Coffee完成签到 ,获得积分10
4秒前
Tumumu完成签到,获得积分10
4秒前
孤芳自赏IrisKing完成签到 ,获得积分10
5秒前
Even完成签到 ,获得积分10
6秒前
书文混四方完成签到 ,获得积分10
7秒前
Dante应助zheng采纳,获得10
8秒前
dream完成签到 ,获得积分10
9秒前
汉堡包应助谷雨采纳,获得10
9秒前
Omni完成签到,获得积分10
12秒前
天天天才完成签到,获得积分10
12秒前
15秒前
15秒前
顏顏完成签到 ,获得积分10
20秒前
zheng完成签到,获得积分10
20秒前
21秒前
11发布了新的文献求助10
21秒前
dada完成签到,获得积分10
22秒前
24秒前
Paper发布了新的文献求助10
25秒前
Yi羿完成签到 ,获得积分10
26秒前
淡淡采白发布了新的文献求助10
27秒前
MchemG应助WUYONGSHUAI采纳,获得10
28秒前
悄悄拔尖儿完成签到 ,获得积分10
29秒前
战神林北完成签到,获得积分10
30秒前
30秒前
木木三发布了新的文献求助30
34秒前
不要慌完成签到 ,获得积分10
36秒前
uranus完成签到,获得积分10
39秒前
淡淡采白完成签到,获得积分10
41秒前
波博士完成签到 ,获得积分10
41秒前
拾光完成签到 ,获得积分10
42秒前
曦颜完成签到 ,获得积分10
42秒前
life的半边天完成签到 ,获得积分10
47秒前
49秒前
Lipeng完成签到,获得积分10
49秒前
感性的夜玉完成签到,获得积分10
50秒前
sun完成签到 ,获得积分10
52秒前
迷人以寒发布了新的文献求助10
56秒前
MchemG应助WUYONGSHUAI采纳,获得10
56秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777535
求助须知:如何正确求助?哪些是违规求助? 3322919
关于积分的说明 10212363
捐赠科研通 3038238
什么是DOI,文献DOI怎么找? 1667247
邀请新用户注册赠送积分活动 798068
科研通“疑难数据库(出版商)”最低求助积分说明 758201