The Quantum Spin Hall Effect: Theory and Experiment

量子霍尔效应 量子自旋霍尔效应 凝聚态物理 自旋(空气动力学) 物理 自旋霍尔效应 量子力学 磁场 电子 自旋极化 热力学
作者
Markus König,H. Buhmann,L. W. Molenkamp,Taylor L. Hughes,Chao‐Xing Liu,Xiao-Liang Qi,Shou-Cheng Zhang
出处
期刊:Journal of the Physical Society of Japan [Physical Society of Japan]
卷期号:77 (3): 031007-031007 被引量:758
标识
DOI:10.1143/jpsj.77.031007
摘要

The search for topologically non-trivial states of matter has become an important goal for condensed matter physics. Recently, a new class of topological insulators has been proposed. These topological insulators have an insulating gap in the bulk, but have topologically protected edge states due to the time reversal symmetry. In two dimensions the helical edge states give rise to the quantum spin Hall (QSH) effect, in the absence of any external magnetic field. Here we review a recent theory which predicts that the QSH state can be realized in HgTe/CdTe semiconductor quantum wells (QWs). By varying the thickness of the QW, the band structure changes from a normal to an "inverted" type at a critical thickness d c . We present an analytical solution of the helical edge states and explicitly demonstrate their topological stability. We also review the recent experimental observation of the QSH state in HgTe/(Hg,Cd)Te QWs. We review both the fabrication of the sample and the experimental setup. For thin QWs with well width d QW <6.3 nm, the insulating regime shows the conventional behavior of vanishingly small conductance at low temperature. However, for thicker QWs ( d QW >6.3 nm), the nominally insulating regime shows a plateau of residual conductance close to 2 e 2 / h . The residual conductance is independent of the sample width, indicating that it is caused by edge states. Furthermore, the residual conductance is destroyed by a small external magnetic field. The quantum phase transition at the critical thickness, d c =6.3 nm, is also independently determined from the occurrence of a magnetic field induced insulator to metal transition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
4秒前
张张发布了新的文献求助50
4秒前
4秒前
充电宝应助优美鱼采纳,获得10
6秒前
幽默山兰发布了新的文献求助10
8秒前
8秒前
科研通AI5应助KellyJ采纳,获得10
9秒前
10秒前
10秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
14秒前
15秒前
16秒前
不爱吃西葫芦完成签到 ,获得积分10
17秒前
18秒前
19秒前
彬彬发布了新的文献求助10
20秒前
20秒前
欣慰的雪柳完成签到,获得积分10
20秒前
24秒前
ann关闭了ann文献求助
24秒前
张张完成签到,获得积分10
24秒前
25秒前
25秒前
26秒前
28秒前
28秒前
30秒前
wangnn完成签到,获得积分10
30秒前
31秒前
32秒前
33秒前
36秒前
36秒前
38秒前
39秒前
幽默山兰完成签到,获得积分10
39秒前
ChaoyongWu发布了新的文献求助20
39秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Semiconductor devices : pioneering papers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3862200
求助须知:如何正确求助?哪些是违规求助? 3404743
关于积分的说明 10641081
捐赠科研通 3127932
什么是DOI,文献DOI怎么找? 1724965
邀请新用户注册赠送积分活动 830759
科研通“疑难数据库(出版商)”最低求助积分说明 779421