Reduced and n-Type Doped TiO2: Nature of Ti3+ Species

离域电子 密度泛函理论 兴奋剂 混合功能 锐钛矿 离子 材料科学 带隙 电子结构 简并能级 化学物理 计算化学 化学 凝聚态物理 物理 量子力学 催化作用 光催化 生物化学
作者
Cristiana Di Valentin,Gianfranco Pacchioni,Annabella Selloni
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:113 (48): 20543-20552 被引量:636
标识
DOI:10.1021/jp9061797
摘要

Defect states in reduced and n-type doped titania are of fundamental importance in several technologically important applications. Still, the exact nature of these states, often referred to as “Ti3+ centers”, is largely unclear and a matter of debate. The problem is complicated by the fact that electronic structure calculations based on density functional theory (DFT) in the local density approximation (LDA) or semilocal generalized gradient approximation (GGA) provide results that do not account for many of the experimentally observed fingerprints of the formation of Ti3+ centers in reduced TiO2. Here, we investigate the properties of at least four different types of Ti3+ centers in bulk anatase, (1) 6-fold-coordinated Ti6c3+ ions introduced by F- or Nb-doping, (2) Ti6c3+−OH species associated with H-doping, (3) undercoordinated Ti5c3+ species associated with oxygen vacancies, and (4) interstitial Ti5c3+ species. The characterization of these different kinds of Ti3+ centers is based on DFT+U and/or hybrid functional calculations, which are known to (partially) correct the self-interaction error of local and semilocal DFT functionals. We found that strongly localized solutions where an excess electron is on a single Ti3+ ion are very close in energy and sometimes degenerate with partly or highly delocalized solutions where the extra charge is distributed over several Ti ions. The defect states corresponding to these different solutions lie at different energies in the band gap of the material. This has important implications for the conductivity mechanism in reduced or n-type doped titania and suggests a significant role of temperature in determining the degree of localization of the trapped charge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小金今天自律了吗完成签到,获得积分10
1秒前
星辰大海应助hellipe采纳,获得10
2秒前
LULU完成签到,获得积分10
2秒前
负减淇完成签到,获得积分20
3秒前
小二郎应助HARU采纳,获得10
3秒前
zds233发布了新的文献求助10
3秒前
huanj发布了新的文献求助10
4秒前
倒置的脚印完成签到,获得积分10
4秒前
无所谓发布了新的文献求助10
4秒前
5秒前
iVANPENNY应助平常的心采纳,获得10
5秒前
微微完成签到,获得积分10
6秒前
6秒前
曾经的刺猬完成签到,获得积分10
7秒前
7秒前
上官断缘完成签到,获得积分10
7秒前
ywj完成签到,获得积分10
7秒前
wen关闭了wen文献求助
7秒前
所所应助白日幻想家采纳,获得10
8秒前
泰酷辣完成签到 ,获得积分20
9秒前
西贝发布了新的文献求助10
10秒前
shinysparrow应助科研通管家采纳,获得10
10秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
七七发布了新的文献求助10
10秒前
壳米应助科研通管家采纳,获得20
11秒前
CodeCraft应助科研通管家采纳,获得10
11秒前
11秒前
壳米应助科研通管家采纳,获得20
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
SciGPT应助科研通管家采纳,获得10
11秒前
壳米应助科研通管家采纳,获得20
11秒前
林宥嘉应助科研通管家采纳,获得10
11秒前
shinysparrow应助科研通管家采纳,获得10
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
11秒前
Orange应助科研通管家采纳,获得10
11秒前
高分求助中
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
De arte gymnastica. The art of gymnastics 600
少脉山油柑叶的化学成分研究 530
Mechanical Methods of the Activation of Chemical Processes 510
Berns Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
Stephen R. Mackinnon - Chen Hansheng: China’s Last Romantic Revolutionary (2023) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2420139
求助须知:如何正确求助?哪些是违规求助? 2110565
关于积分的说明 5340660
捐赠科研通 1837909
什么是DOI,文献DOI怎么找? 915124
版权声明 561142
科研通“疑难数据库(出版商)”最低求助积分说明 489365