The five-parameter logistic: A characterization and comparison with the four-parameter logistic

不对称 逻辑回归 逻辑函数 功能(生物学) 统计 计算机科学 曲线拟合 实验数据 数据挖掘 生物系统 算法 数学 生物 物理 量子力学 进化生物学
作者
Paul G. Gottschalk,John R. Dunn
出处
期刊:Analytical Biochemistry [Elsevier BV]
卷期号:343 (1): 54-65 被引量:424
标识
DOI:10.1016/j.ab.2005.04.035
摘要

Improvements in assay technology have reduced the amount of random variation in measured responses to the point where even slight asymmetry of the assay data can be more significant than random variation. Use of the five-parameter logistic (5PL) function to fit dose–response data easily accommodates such asymmetry. The 5PL can dramatically improve the accuracy of asymmetric assays over the use of symmetric models such as the four-parameter logistic (4PL) function. Until recently, however, the process of fitting the 5PL function has been difficult, with the result that the 4PL function has continued to be used even for highly asymmetric data. Various ad hoc modifications of the 4PL method have been developed in an attempt to address asymmetric data. However, recent advances in numerical methods and assay analysis software have rendered easier the fitting of the 5PL routine. This paper demonstrates how use of the 5PL function can improve assay performance over the 4PL and its variants. Specifically, the improvement in the accuracy of concentration estimates that can be obtained using the 5PL over the 4PL as a function of the asymmetry present in the data is studied. The behavior of the 5PL curve and how it differs from the 4PL curve are discussed. Common experimental designs, which can lead to ill-conditioned regression problems, are also examined.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
whh发布了新的文献求助20
1秒前
善学以致用应助rtx00采纳,获得10
1秒前
1秒前
byron完成签到,获得积分10
2秒前
DW发布了新的文献求助10
3秒前
Nolan完成签到,获得积分10
4秒前
安静一曲完成签到 ,获得积分10
5秒前
勤劳的道罡完成签到,获得积分10
5秒前
陈宏宇完成签到,获得积分10
6秒前
7秒前
从南到北发布了新的文献求助10
7秒前
思源应助wangSF采纳,获得10
10秒前
聪明胡图图完成签到,获得积分10
11秒前
ksxx发布了新的文献求助10
12秒前
木头人应助Carly采纳,获得20
13秒前
垃圾桶完成签到,获得积分10
13秒前
田様应助Cm采纳,获得10
13秒前
充电宝应助左丘世立采纳,获得10
15秒前
ding应助淡淡的凌旋采纳,获得10
16秒前
h'c'z完成签到,获得积分10
16秒前
17秒前
Ava应助sfliufighting采纳,获得10
18秒前
18秒前
18秒前
18秒前
谦让小松鼠完成签到,获得积分10
21秒前
Akim应助Alicer采纳,获得20
21秒前
传奇3应助Rae采纳,获得20
21秒前
whh完成签到,获得积分10
22秒前
傲娇芷雪完成签到,获得积分10
22秒前
明芬发布了新的文献求助10
23秒前
24秒前
vivvy完成签到,获得积分10
24秒前
Kirito应助Micky采纳,获得40
24秒前
CodeCraft应助Havibi采纳,获得10
25秒前
CACT完成签到,获得积分10
25秒前
叫我少爷完成签到 ,获得积分10
27秒前
1Yer6完成签到 ,获得积分10
29秒前
xiaoxiaozhu完成签到,获得积分10
30秒前
fengpu应助Sylus采纳,获得20
31秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
A Student's Guide to Developmental Psychology 600
Stem Cells: Scientific Facts and Fiction 3rd Edition 500
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4158059
求助须知:如何正确求助?哪些是违规求助? 3693764
关于积分的说明 11664655
捐赠科研通 3385247
什么是DOI,文献DOI怎么找? 1856880
邀请新用户注册赠送积分活动 918086
科研通“疑难数据库(出版商)”最低求助积分说明 831347