Bayesian statistical modelling of human protein interaction network incorporating protein disorder information

计算机科学 生物网络 网络分析 节点(物理) 相互依存的网络 网络模型 统计模型 编队网络 网络拓扑 数据挖掘 理论计算机科学 人工智能 复杂网络 计算生物学 生物 物理 操作系统 量子力学 万维网
作者
Svetlana Bulashevska,Alla Bulashevska,Roland Eils
出处
期刊:BMC Bioinformatics [BioMed Central]
卷期号:11 (1) 被引量:20
标识
DOI:10.1186/1471-2105-11-46
摘要

We present a statistical method of analysis of biological networks based on the exponential random graph model, namely p2-model, as opposed to previous descriptive approaches. The model is capable to capture generic and structural properties of a network as emergent from local interdependencies and uses a limited number of parameters. Here, we consider one global parameter capturing the density of edges in the network, and local parameters representing each node's contribution to the formation of edges in the network. The modelling suggests a novel definition of important nodes in the network, namely social, as revealed based on the local sociality parameters of the model. Moreover, the sociality parameters help to reveal organizational principles of the network. An inherent advantage of our approach is the possibility of hypotheses testing: a priori knowledge about biological properties of the nodes can be incorporated into the statistical model to investigate its influence on the structure of the network.We applied the statistical modelling to the human protein interaction network obtained with Y2H experiments. Bayesian approach for the estimation of the parameters was employed. We deduced social proteins, essential for the formation of the network, while incorporating into the model information on protein disorder. Intrinsically disordered are proteins which lack a well-defined three-dimensional structure under physiological conditions. We predicted the fold group (ordered or disordered) of proteins in the network from their primary sequences. The network analysis indicated that protein disorder has a positive effect on the connectivity of proteins in the network, but do not fully explains the interactivity.The approach opens a perspective to study effects of biological properties of individual entities on the structure of biological networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jibenkun完成签到,获得积分10
刚刚
英姑应助hahhahahh采纳,获得10
1秒前
weiwei完成签到,获得积分10
2秒前
科研小lese发布了新的文献求助50
2秒前
bc应助mibugi采纳,获得10
3秒前
bc应助wangjius采纳,获得10
3秒前
研友_Z30GJ8完成签到,获得积分0
3秒前
激昂的梦山完成签到 ,获得积分10
4秒前
加菲丰丰应助怡然幼枫采纳,获得10
4秒前
hahhahahh完成签到,获得积分10
5秒前
5秒前
tomorrow完成签到 ,获得积分10
6秒前
6秒前
怕黑行恶完成签到,获得积分10
8秒前
梅子完成签到 ,获得积分10
8秒前
zxy完成签到 ,获得积分10
10秒前
刘哔发布了新的文献求助10
10秒前
包包酱完成签到,获得积分10
10秒前
ccq发布了新的文献求助10
10秒前
devil完成签到,获得积分10
12秒前
Finch11完成签到,获得积分10
12秒前
华仔应助谢富杰采纳,获得10
13秒前
14秒前
冰魂应助Singsea采纳,获得10
17秒前
刘哔完成签到,获得积分10
18秒前
19秒前
剁椒鱼头完成签到 ,获得积分10
20秒前
hahhahahh发布了新的文献求助10
20秒前
yanghui完成签到,获得积分20
22秒前
kjhkj发布了新的文献求助10
24秒前
24秒前
26秒前
27秒前
邝边边完成签到,获得积分10
28秒前
29秒前
kjhkj完成签到,获得积分10
30秒前
韩hqf发布了新的文献求助10
33秒前
Orange应助怡然幼枫采纳,获得10
34秒前
ccq完成签到,获得积分10
35秒前
淡淡书白完成签到,获得积分10
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777790
求助须知:如何正确求助?哪些是违规求助? 3323297
关于积分的说明 10213693
捐赠科研通 3038552
什么是DOI,文献DOI怎么找? 1667545
邀请新用户注册赠送积分活动 798161
科研通“疑难数据库(出版商)”最低求助积分说明 758275