AU-Net: Adaptive Unified Network for Joint Multi-Modal Image Registration and Fusion

保险丝(电气) 图像融合 计算机科学 人工智能 计算机视觉 融合规则 卷积神经网络 内存占用 架空(工程) 图像(数学) 模式识别(心理学) 工程类 操作系统 电气工程
作者
Ming Lu,Min Jiang,Xuefeng Tao,Jun Kong
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:34: 4721-4735
标识
DOI:10.1109/tip.2025.3586507
摘要

Joint multi-modal image registration and fusion (JMIRF) typically follows a register-first, fuse-later paradigm. It has a registration module to align parallax images and a fusion module to fuse registered images. Existing research typically focuses on the mutual enhancement between the two modules, but this is essentially a straightforward combination rather than an efficient, unified network. Moreover, executing the two modules separately may cause inefficiency, as the total runtime is merely the sum of both steps without investigating potential shared structures. In this paper, we propose an Adaptive Unified Network (AU-Net) following a novel end-to-end paradigm called Feature-Level Joint Training (FLJT). Firstly, AU-Net learns registration and fusion within a unified network through shared structure and hierarchical semantic interaction. A multi-level dynamic fusion module is designed to adaptively fuse input features from different scales and modalities. Secondly, the image-to-image translation based on Denoising Diffusion Probabilistic Models (DDPMs) is introduced to train AU-Net using simple and reliable single-modal metrics. Unlike previous unidirectional translation, we explore bidirectional translation to provide additional implicit branch supervision. Furthermore, a cache-like scheme is proposed to elegantly circumvent the additional computational overhead caused by the iterative denoising of DDPMs. Finally, our method was validated on two publicly available datasets, demonstrating advantages over state-of-the-art methods in terms of qualitative evaluation, quantitative evaluation, and computational complexity analysis. The code will be publically available at https://github.com/luming1314/AU-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Nothing完成签到,获得积分10
刚刚
seven完成签到,获得积分20
刚刚
Ava应助李_Steven采纳,获得10
1秒前
李爱国应助李_Steven采纳,获得10
1秒前
酷波er应助美式采纳,获得10
1秒前
打打应助李_Steven采纳,获得10
1秒前
1秒前
慕青应助李_Steven采纳,获得10
1秒前
1秒前
Orange应助李_Steven采纳,获得10
1秒前
Owen应助李_Steven采纳,获得10
1秒前
小马甲应助李_Steven采纳,获得10
1秒前
斯文败类应助李_Steven采纳,获得10
1秒前
研友_VZG7GZ应助李_Steven采纳,获得10
1秒前
orixero应助李_Steven采纳,获得10
1秒前
1秒前
1秒前
2秒前
zilan发布了新的文献求助10
2秒前
2秒前
希望天下0贩的0应助daozheng采纳,获得10
3秒前
Nothing发布了新的文献求助10
3秒前
李爱国应助科研王采纳,获得10
3秒前
虚幻馒头完成签到,获得积分10
4秒前
虎妞完成签到 ,获得积分10
4秒前
赘婿应助王干采纳,获得10
4秒前
蓦然发布了新的文献求助10
4秒前
脑洞疼应助mark采纳,获得10
4秒前
orixero应助柠檬没我萌采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
NexusExplorer应助lifang采纳,获得10
4秒前
Elaine完成签到,获得积分10
5秒前
lululala发布了新的文献求助10
5秒前
小面包发布了新的文献求助10
5秒前
爱学习的瑞瑞子完成签到 ,获得积分10
5秒前
无花果应助余小乐采纳,获得10
5秒前
HUYAOWEI发布了新的文献求助10
5秒前
科研通AI6应助愉快的芒果采纳,获得10
5秒前
whisper发布了新的文献求助10
5秒前
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5654514
求助须知:如何正确求助?哪些是违规求助? 4794348
关于积分的说明 15069355
捐赠科研通 4813060
什么是DOI,文献DOI怎么找? 2575016
邀请新用户注册赠送积分活动 1530427
关于科研通互助平台的介绍 1489102