Emerging Applications of Feature Selection in Osteoporosis Research: From Biomarker Discovery to Clinical Decision Support

特征选择 生物标志物发现 机器学习 可解释性 人工智能 计算机科学 过度拟合 生物标志物 弹性网正则化 精密医学 数据挖掘 生物信息学 医学 蛋白质组学 病理 生物 人工神经网络 基因 生物化学
作者
Jihan Wang,Yangyang Wang,Jia Ren,Zitong Li,Lei Guo,Jing Lv
出处
期刊:Journal of Bone and Mineral Research [Oxford University Press]
标识
DOI:10.1093/jbmr/zjaf105
摘要

Abstract Osteoporosis (OP), a systemic skeletal disease characterized by compromised bone strength and elevated fracture susceptibility, represents a growing global health challenge that necessitates early detection and accurate risk stratification. With the exponential growth of multidimensional biomedical data in OP research, feature selection has become an indispensable machine learning paradigm that improves model generalizability. At the same time, it preserves clinical interpretability and enhances predictive accuracy. This perspective article systematically reviews the transformative role of feature selection methodologies across three critical domains of OP investigation: 1) multi-omics biomarker identification, 2) diagnostic pattern recognition, and 3) fracture risk prognostication. In biomarker discovery, advanced feature selection algorithms systematically refine high-dimensional multi-omics datasets (genomic, proteomic, metabolomic) to isolate key molecular signatures correlated with bone mineral density (BMD) trajectories and microarchitectural deterioration. For clinical diagnostics, these techniques enable efficient extraction of discriminative pattern from multimodal imaging data, including dual-energy X-ray absorptiometry (DXA), quantitative computed tomography (CT), and emerging dental radiographic biomarkers. In prognostic modeling, strategic variable selection optimizes prognostic accuracy by integrating demographic, biochemical, and biomechanical predictors while migrating overfitting in heterogeneous patient cohorts. Current challenges include heterogeneity in dataset quality and dimensionality, translational gaps between algorithmic outputs and clinical decision parameters, and limited reproducibility across diverse populations. Future directions should prioritize the development of adaptive feature selection frameworks capable of dynamic multi-omics data integration, coupled with hybrid intelligence systems that synergize machine-derived biomarkers with clinician expertise. Addressing these challenges requires coordinated interdisciplinary efforts to establish standardized validation protocols and create clinician-friendly decision support interfaces, ultimately bridging the gap between computational OP research and personalized patient care.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
11111完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助50
1秒前
善学以致用应助须臾采纳,获得10
2秒前
汉堡包应助11采纳,获得10
3秒前
4秒前
David完成签到 ,获得积分10
4秒前
5秒前
了哟发布了新的文献求助10
5秒前
volcano完成签到 ,获得积分10
8秒前
辰溟发布了新的文献求助10
9秒前
FCB1232关注了科研通微信公众号
10秒前
11秒前
12秒前
与你共奋完成签到,获得积分10
12秒前
Daisy完成签到,获得积分10
14秒前
xin_you完成签到,获得积分0
15秒前
ccc完成签到,获得积分10
16秒前
猕猴桃完成签到,获得积分10
17秒前
18秒前
18秒前
19秒前
量子星尘发布了新的文献求助10
20秒前
21秒前
秋山红雨发布了新的文献求助10
22秒前
22秒前
清平道人完成签到,获得积分10
23秒前
24秒前
汪汪发布了新的文献求助10
25秒前
26秒前
单阁完成签到,获得积分10
26秒前
keaijun发布了新的文献求助10
27秒前
28秒前
汪汪完成签到,获得积分10
30秒前
31秒前
gqfang完成签到,获得积分10
31秒前
秋山红雨完成签到,获得积分20
33秒前
33秒前
开花发布了新的文献求助10
33秒前
爆米花应助辛勤月饼采纳,获得10
33秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
血液中补体及巨噬细胞对大肠杆菌噬菌体PNJ1809-09活性的影响 500
Methodology for the Human Sciences 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4325279
求助须知:如何正确求助?哪些是违规求助? 3840252
关于积分的说明 12003814
捐赠科研通 3481134
什么是DOI,文献DOI怎么找? 1909404
邀请新用户注册赠送积分活动 954473
科研通“疑难数据库(出版商)”最低求助积分说明 855707