Multi‐modal models using fMRI , urine and serum biomarkers for classification and risk prognosis in diabetic kidney disease

医学 置信区间 曲线下面积 磁共振成像 生物标志物 磁共振弥散成像 内科学 人工智能 机器学习 放射科 计算机科学 生物化学 化学
作者
Xian Shao,Huanqing Xu,Lianqin Chen,Pufei Bai,Haizhen Sun,Qian Yang,Ruixuan Chen,Queran Lin,Lihua Wang,Ying Li,Yao Lin,Pei Yu
出处
期刊:Diabetes, Obesity and Metabolism [Wiley]
卷期号:27 (9): 5192-5208
标识
DOI:10.1111/dom.16572
摘要

Abstract Background Functional magnetic resonance imaging (fMRI) is a powerful tool for non‐invasive evaluation of micro‐changes in the kidneys. This study aims to develop classification and prognostic models based on multi‐modal data. Methods A total of 172 participants were included, and high‐resolution multi‐parameter fMRI technology was employed to obtain T2‐weighted imaging (T2WI), blood oxygen level dependent (BOLD), and diffusion tensor imaging (DTI) sequence images. Based on clinical indicators, fMRI markers, serum and urine biomarkers (CD300LF, CST4, MMRN2, SERPINA1, l ‐glutamic acid dimethyl ester and phosphatidylcholine), machine learning algorithms were applied to establish and validate classification diagnosis models (Models 1–6) and risk‐prognostic models (Models A–E). Additionally, accuracy, sensitivity, specificity, precision, area under the curve (AUC) and recall were used to evaluate the predictive performance of the models. Results A total of six classification models were established. Model 5 (fMRI + clinical indicators) exhibited superior performance, with an accuracy of 0.833 (95% confidence interval [CI]: 0.653–0.944). Notably, the multi‐modal model incorporating image, serum and urine multi‐omics and clinical indicators (Model 6) demonstrated higher predictive performance, achieving an accuracy of 0.923 (95% CI: 0.749–0.991). Furthermore, a total of five prognostic models at 2‐year and 3‐year follow‐up were established. The Model E exhibited superior performance, achieving AUC values of 0.975 at the 2‐year follow‐up and 0.932 at the 3‐year follow‐up. Furthermore, Model E can identify patients with a high‐risk prognosis. Conclusion In clinical practice, the multi‐modal models presented in this study demonstrate potential to enhance clinical decision‐making capabilities regarding patient classification and prognosis prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
平常树叶完成签到,获得积分10
1秒前
研友_VZG7GZ应助hif1a采纳,获得10
3秒前
清秋完成签到,获得积分10
4秒前
lijunhao发布了新的文献求助10
4秒前
科研通AI6应助Miracle采纳,获得10
4秒前
4秒前
Kyra12完成签到 ,获得积分10
4秒前
852应助小彬采纳,获得10
4秒前
4秒前
5秒前
Orange应助loong采纳,获得10
5秒前
5秒前
迪土尼在逃王子完成签到,获得积分10
5秒前
乔乔兔发布了新的文献求助10
5秒前
snowwww完成签到,获得积分10
5秒前
海上聆风发布了新的文献求助10
5秒前
咖啡苦咔咔完成签到,获得积分10
5秒前
Vivian完成签到,获得积分10
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
安妮发布了新的文献求助10
7秒前
落林樾完成签到,获得积分10
7秒前
lll发布了新的文献求助10
8秒前
8秒前
Owen应助木木采纳,获得10
9秒前
吴吴发布了新的文献求助20
9秒前
kong发布了新的文献求助10
9秒前
psycho完成签到,获得积分20
9秒前
9秒前
10秒前
Mingyue123完成签到 ,获得积分10
10秒前
丹丹发布了新的文献求助10
11秒前
轻松箴完成签到,获得积分10
11秒前
鸡排饭加个蛋完成签到,获得积分10
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525775
求助须知:如何正确求助?哪些是违规求助? 4615867
关于积分的说明 14550800
捐赠科研通 4553950
什么是DOI,文献DOI怎么找? 2495593
邀请新用户注册赠送积分活动 1476136
关于科研通互助平台的介绍 1447836