Multi‐modal models using fMRI, urine and serum biomarkers for classification and risk prognosis in diabetic kidney disease

医学 置信区间 曲线下面积 磁共振成像 生物标志物 磁共振弥散成像 内科学 人工智能 机器学习 放射科 计算机科学 生物化学 化学
作者
Xian Shao,Huanqing Xu,Lianqin Chen,Pufei Bai,Haizhen Sun,Qian Yang,Ruixuan Chen,Queran Lin,Lihua Wang,Ying Li,Yao Lin,Pei Yu
出处
期刊:Diabetes, Obesity and Metabolism [Wiley]
标识
DOI:10.1111/dom.16572
摘要

Abstract Background Functional magnetic resonance imaging (fMRI) is a powerful tool for non‐invasive evaluation of micro‐changes in the kidneys. This study aims to develop classification and prognostic models based on multi‐modal data. Methods A total of 172 participants were included, and high‐resolution multi‐parameter fMRI technology was employed to obtain T2‐weighted imaging (T2WI), blood oxygen level dependent (BOLD), and diffusion tensor imaging (DTI) sequence images. Based on clinical indicators, fMRI markers, serum and urine biomarkers (CD300LF, CST4, MMRN2, SERPINA1, l ‐glutamic acid dimethyl ester and phosphatidylcholine), machine learning algorithms were applied to establish and validate classification diagnosis models (Models 1–6) and risk‐prognostic models (Models A–E). Additionally, accuracy, sensitivity, specificity, precision, area under the curve (AUC) and recall were used to evaluate the predictive performance of the models. Results A total of six classification models were established. Model 5 (fMRI + clinical indicators) exhibited superior performance, with an accuracy of 0.833 (95% confidence interval [CI]: 0.653–0.944). Notably, the multi‐modal model incorporating image, serum and urine multi‐omics and clinical indicators (Model 6) demonstrated higher predictive performance, achieving an accuracy of 0.923 (95% CI: 0.749–0.991). Furthermore, a total of five prognostic models at 2‐year and 3‐year follow‐up were established. The Model E exhibited superior performance, achieving AUC values of 0.975 at the 2‐year follow‐up and 0.932 at the 3‐year follow‐up. Furthermore, Model E can identify patients with a high‐risk prognosis. Conclusion In clinical practice, the multi‐modal models presented in this study demonstrate potential to enhance clinical decision‐making capabilities regarding patient classification and prognosis prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲤鱼青雪完成签到,获得积分10
3秒前
kdc完成签到,获得积分10
5秒前
迷了路的猫完成签到,获得积分10
5秒前
8秒前
沉默的冬寒完成签到 ,获得积分10
8秒前
LaZyMore发布了新的文献求助10
11秒前
14秒前
ma完成签到,获得积分20
17秒前
qzp完成签到 ,获得积分10
17秒前
18秒前
天真的纲完成签到,获得积分10
19秒前
廉洁完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
21秒前
xiang完成签到 ,获得积分10
22秒前
23秒前
00完成签到 ,获得积分10
26秒前
rayqiang完成签到,获得积分0
26秒前
hjyylab应助科研通管家采纳,获得10
27秒前
hjyylab应助科研通管家采纳,获得10
27秒前
27秒前
英俊的铭应助科研通管家采纳,获得10
27秒前
Monkey_Z完成签到,获得积分10
27秒前
小二郎应助科研通管家采纳,获得10
27秒前
CipherSage应助科研通管家采纳,获得10
27秒前
orixero应助科研通管家采纳,获得10
27秒前
科研通AI5应助Brave采纳,获得10
27秒前
29秒前
30秒前
ions应助YoungDoctor采纳,获得20
35秒前
sunnywang发布了新的文献求助10
35秒前
丹青完成签到 ,获得积分10
36秒前
离子电池完成签到,获得积分10
41秒前
量子星尘发布了新的文献求助10
41秒前
正觉完成签到,获得积分10
42秒前
忘崽子小拳头完成签到,获得积分10
46秒前
甘蓝型油菜完成签到,获得积分10
50秒前
50秒前
复杂的傲柔完成签到 ,获得积分10
51秒前
羊白玉完成签到 ,获得积分10
51秒前
量子星尘发布了新的文献求助10
56秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
MATLAB在电子信息类专业中的应用 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4211349
求助须知:如何正确求助?哪些是违规求助? 3745422
关于积分的说明 11785543
捐赠科研通 3413817
什么是DOI,文献DOI怎么找? 1873348
邀请新用户注册赠送积分活动 927830
科研通“疑难数据库(出版商)”最低求助积分说明 837242