已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Precision and Personalization: How Large Language Models Redefining Diagnostic Accuracy in Personalized Medicine — A Systematic Literature Review

计算机科学 个性化 精密医学 个性化医疗 自然语言处理 人工智能 情报检索 数据科学 数据挖掘 医学 生物信息学 万维网 病理 生物
作者
A. K. N. L. Aththanagoda,K.A.S.H. Kulathilake,Nor Aniza Abdullah
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-21 被引量:2
标识
DOI:10.1109/jbhi.2025.3584179
摘要

Personalized medicine aims to tailor medical treatments to the unique characteristics of each patient, but its effectiveness relies on achieving diagnostic accuracy to fully understand individual variability in disease response and treatment efficacy. This systematic literature review explores the role of large language models (LLMs) in enhancing diagnostic precision and supporting the advancement of personalized medicine. A comprehensive search was conducted across Web of Science, Science Direct, Scopus, and IEEE Xplore, targeting peer-reviewed articles published in English between January 2020 and March 2025 that applied LLMs within personalized medicine contexts. Following PRISMA guidelines, 39 relevant studies were selected and systematically analyzed. The findings indicate a growing integration of LLMs across key domains such as clinical informatics, medical imaging, patient-specific diagnosis, and clinical decision support. LLMs have shown potential in uncovering subtle data patterns critical for accurate diagnosis and personalized treatment planning. This review highlights the expanding role of LLMs in improving diagnostic accuracy in personalized medicine, offering insights into their performance, applications, and challenges, while also acknowledging limitations in generalizability due to variable model performance and dataset biases. The review highlights the importance of addressing challenges related to data privacy, model interpretability, and reliability across diverse clinical scenarios. For successful clinical integration, future research must focus on refining LLM technologies, ensuring ethical standards, and validating models continuously to safeguard effective and responsible use in healthcare environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
扶风阁主发布了新的文献求助10
1秒前
ying818k完成签到 ,获得积分10
2秒前
李健的小迷弟应助Yt_liu采纳,获得10
3秒前
想法文章的菜鸟完成签到,获得积分10
4秒前
王绪威完成签到,获得积分20
5秒前
7秒前
8秒前
10秒前
小马甲应助LXF采纳,获得10
13秒前
跟我回江南完成签到,获得积分10
15秒前
YangSihan发布了新的文献求助10
16秒前
从容冰夏完成签到,获得积分10
16秒前
www发布了新的文献求助10
16秒前
老坛完成签到,获得积分10
16秒前
霉头脑完成签到 ,获得积分10
18秒前
小黄还你好完成签到,获得积分10
20秒前
海茵完成签到,获得积分10
22秒前
李健的小迷弟应助YangSihan采纳,获得10
23秒前
24秒前
25秒前
wanci应助ppdzhu采纳,获得10
26秒前
绵绵冰完成签到 ,获得积分10
27秒前
29秒前
CodeCraft应助魔幻的紫烟采纳,获得10
30秒前
Yt_liu发布了新的文献求助10
30秒前
30秒前
超级灰狼完成签到 ,获得积分10
32秒前
34秒前
共享精神应助杨文海采纳,获得10
35秒前
Akim应助默默荔枝采纳,获得10
35秒前
36秒前
36秒前
Pauline发布了新的文献求助10
37秒前
hnsun21完成签到,获得积分10
37秒前
37秒前
38秒前
山俗完成签到,获得积分10
39秒前
LHL完成签到,获得积分10
39秒前
xiebao发布了新的文献求助10
39秒前
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5090076
求助须知:如何正确求助?哪些是违规求助? 4304701
关于积分的说明 13414655
捐赠科研通 4130369
什么是DOI,文献DOI怎么找? 2262239
邀请新用户注册赠送积分活动 1266168
关于科研通互助平台的介绍 1200858