DRSN-GAF: Deep Residual Shrinkage Network (DRSN) for Lithology Classification Through Well Logging Data Transformed by Gram Angle Field

过度拟合 残余物 岩性 计算机科学 领域(数学) 人工神经网络 人工智能 预处理器 登录中 地质学 遥感 模式识别(心理学) 数据挖掘 算法 岩石学 数学 生物 生态学 纯数学
作者
Youzhuang Sun,Shanchen Pang,Junhua Zhang,Yong-An Zhang
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:21: 1-5 被引量:3
标识
DOI:10.1109/lgrs.2023.3346382
摘要

Lithology holds significant importance in reservoir evaluation and geological modeling. However, the complex relationship between logging and lithology leads to strong multi-solutions in logging responses, resulting in inaccurate identification of traditional logging lithology methods. Given the impressive performance of deep learning in data classification, we delved further into the technology and presented a deep residual network for lithological classification. The DRSN model incorporates an attention mechanism and a soft thresholding strategy based on the residual network. The residual shrinkage mechanism is the core characteristic of DRSN. It enhances model sparsity by shrinking the weights in the residual block (soft threshold strategy), resulting in a simpler model, and mitigating the overfitting problem. To test the model, we selected data from two wells in the Tarim Oilfield, China. In this paper, we innovatively utilize the Gram Angle Field (GAF) to convert one-dimensional logging parameters into two-dimensional images. These images are then input into the DRSN model, employing the idea of image processing to tackle the lithology classification problem. GAF effectively captures time-series information and converts one-dimensional time-series data into a two-dimensional matrix representation. Furthermore, GAF enhances the ability to capture nonlinear structures and patterns in time-series data by utilizing trigonometric transformations. Experimental results demonstrate that the DRSN-GAF network outperforms both DRSN and CNN networks in terms of accuracy. The lithology prediction tasks for the two wells achieve accuracies of 96.00% and 96.50%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
成就茗完成签到 ,获得积分10
3秒前
自然白安完成签到 ,获得积分10
5秒前
lucky发布了新的文献求助10
6秒前
8秒前
liushiyi完成签到,获得积分10
8秒前
11秒前
Hsyin完成签到,获得积分10
13秒前
动漫大师发布了新的文献求助30
17秒前
22秒前
22秒前
23秒前
动漫大师发布了新的文献求助30
23秒前
薛薛完成签到,获得积分10
24秒前
大渣饼完成签到 ,获得积分10
24秒前
星宿陨发布了新的文献求助10
26秒前
Enri发布了新的文献求助10
27秒前
xiaoshuwang完成签到,获得积分10
27秒前
太渊完成签到 ,获得积分10
29秒前
NeuroYan发布了新的文献求助20
29秒前
winew完成签到 ,获得积分10
30秒前
700w完成签到 ,获得积分0
31秒前
李爱国应助科研通管家采纳,获得10
31秒前
酷波er应助科研通管家采纳,获得10
31秒前
笨笨芯应助科研通管家采纳,获得10
31秒前
香蕉觅云应助科研通管家采纳,获得10
31秒前
脑洞疼应助科研通管家采纳,获得10
31秒前
wanci应助科研通管家采纳,获得10
31秒前
王天一完成签到,获得积分10
31秒前
alna完成签到,获得积分10
32秒前
动漫大师发布了新的文献求助50
32秒前
共享精神应助荣匪采纳,获得10
33秒前
科研通AI5应助Enri采纳,获得30
33秒前
MchemG应助星宿陨采纳,获得10
34秒前
平常的毛豆应助longlong采纳,获得10
35秒前
37秒前
干羞花完成签到,获得积分10
39秒前
景淮发布了新的文献求助10
42秒前
冇_完成签到 ,获得积分10
43秒前
科研通AI2S应助guozizi采纳,获得10
45秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783118
求助须知:如何正确求助?哪些是违规求助? 3328459
关于积分的说明 10236592
捐赠科研通 3043558
什么是DOI,文献DOI怎么找? 1670577
邀请新用户注册赠送积分活动 799766
科研通“疑难数据库(出版商)”最低求助积分说明 759119