作者
Ryoung‐Eun Ko,Ji‐Hye Lee,Sungeun Kim,Joonghyun Ahn,Soo Jin Na,Jeong Hoon Yang
摘要
Introduction and objectives: Delirium, recognized as a crucial prognostic factor in the cardiac intensive care unit (CICU), has evolved in response to the changing demographics among critically ill cardiac patients. This study aimed to create a predictive model for delirium for patients in the CICU. Methods: This study included consecutive patients admitted to the CICU of the Samsung Medical Center. To assess the candidate variables for the model: we applied the following machine learning methods: random forest, extreme gradient boosting, partial least squares, and Plmnet-elastic.net. After selecting relevant variables, we performed a logistic regression analysis to derive the model formula. Internal validation was conducted using 100-repeated hold-out validation. Results: We analyzed 2774 patients, 677 (24.4%) of whom developed delirium in the CICU. Machine learning-based models showed good predictive performance. Clinically significant and frequently important predictors were selected to construct a delirium prediction scoring model for CICU patients. The model included albumin level, international normalized ratio, blood urea nitrogen, white blood cell count, C-reactive protein level, age, heart rate, and mechanical ventilation. The model had an area under the receiver operating characteristics curve (AUROC) of 0.861 (95%CI, 0.843-0.879). Similar results were obtained in internal validation with 100-repeated cross-validation (AUROC, 0.854; 95%CI, 0.826-0.883). Conclusions: Using variables frequently ranked as highly important in four machine learning methods, we created a novel delirium prediction model. This model could serve as a useful and simple tool for risk stratification for the occurrence of delirium at the patient’s bedside in the CICU. Introducción y objetivos: Este estudio surge de la creciente importancia del delirio como factor pronóstico en la unidad de cuidados intensivos cardiacos (UCIC) y tiene como meta desarrollar un modelo predictivo del delirio en dichos pacientes. Métodos: Se tomó una muestra de pacientes consecutivos de la UCIC del Samsung Medical Center. Se aplicaron técnicas de aprendizaje automático como random forest, extreme gradient boosting, cuadrados mínimos parciales y Plmnet-elastic.net para evaluar las variables del modelo. Después de identificar las variables pertinentes, se realizó un análisis de regresión logística para formular el modelo. Para la validación interna, se utilizó un método de validación de hold-out repetido 100 veces. Resultados: Se analizó a 2.774 pacientes, de los cuales 677 (24,4%) desarrollaron delirio en la UCIC. Los modelos basados en aprendizaje automático mostraron un alto rendimiento predictivo. Se seleccionaron predictores relevantes y comunes para construir el modelo, que incluía: nivel de albúmina, INR, nitrógeno ureico en sangre, recuento de leucocitos, nivel de proteína C reactiva, edad, frecuencia cardiaca y ventilación mecánica. El modelo obtuvo un área bajo la curva ROC de 0,861 (IC95%, 0,843-0,879), y se confirmó su eficacia en la validación interna con validación cruzada repetida 100 veces (área bajo la curva ROC, 0,854; IC95%, 0,826-0,883). Conclusiones: Se desarrolló un nuevo modelo de predicción de delirio, utilizando variables de alta importancia en 4 métodos de aprendizaje automático. Este modelo puede ser una herramienta práctica para evaluar el riesgo de delirio en pacientes de la UCIC.