医学
布里氏评分
接收机工作特性
逻辑回归
溶栓
外科
不利影响
截肢
内科学
机器学习
计算机科学
心肌梗塞
作者
Ben Li,Naomi Eisenberg,Derek Beaton,Douglas S. Lee,Badr Aljabri,Raj Verma,Duminda N. Wijeysundera,Ori D. Rotstein,Charles de Mestral,Muhammad Mamdani,Graham Roche‐Nagle,Mohammed Al‐Omran
标识
DOI:10.1097/sla.0000000000006181
摘要
Objective: To develop machine learning (ML) algorithms that predict outcomes following infrainguinal bypass. Summary Background Data: Infrainguinal bypass for peripheral artery disease (PAD) carries significant surgical risks; however, outcome prediction tools remain limited. Methods: The Vascular Quality Initiative (VQI) database was used to identify patients who underwent infrainguinal bypass for PAD between 2003-2023. We identified 97 potential predictor variables from the index hospitalization (68 pre-operative [demographic/clinical], 13 intra-operative [procedural], and 16 post-operative [in-hospital course/complications]). The primary outcome was 1-year major adverse limb event (MALE; composite of surgical revision, thrombectomy/thrombolysis, or major amputation) or death. Our data were split into training (70%) and test (30%) sets. Using 10-fold cross-validation, we trained 6 ML models using pre-operative features. The primary model evaluation metric was area under the receiver operating characteristic curve (AUROC). The top-performing algorithm was further trained using intra- and post-operative features. Model robustness was evaluated using calibration plots and Brier scores. Results: Overall, 59,784 patients underwent infrainguinal bypass and 15,942 (26.7%) developed 1-year MALE/death. The best pre-operative prediction model was XGBoost, achieving an AUROC (95% CI) of 0.94 (0.93-0.95). In comparison, logistic regression had an AUROC (95% CI) of 0.61 (0.59-0.63). Our XGBoost model maintained excellent performance at the intra- and post-operative stages, with AUROC’s (95% CI’s) of 0.94 (0.93-0.95) and 0.96 (0.95-0.97), respectively. Calibration plots showed good agreement between predicted and observed event probabilities with Brier scores of 0.08 (pre-operative), 0.07 (intra-operative), and 0.05 (post-operative). Conclusions: ML models can accurately predict outcomes following infrainguinal bypass, outperforming logistic regression.
科研通智能强力驱动
Strongly Powered by AbleSci AI