Using Machine Learning (XGBoost) to Predict Outcomes following Infrainguinal Bypass for Peripheral Artery Disease

医学 布里氏评分 接收机工作特性 逻辑回归 溶栓 外科 不利影响 截肢 内科学 机器学习 计算机科学 心肌梗塞
作者
Ben Li,Naomi Eisenberg,Derek Beaton,Douglas S. Lee,Badr Aljabri,Raj Verma,Duminda N. Wijeysundera,Ori D. Rotstein,Charles de Mestral,Muhammad Mamdani,Graham Roche‐Nagle,Mohammed Al‐Omran
出处
期刊:Annals of Surgery [Lippincott Williams & Wilkins]
被引量:12
标识
DOI:10.1097/sla.0000000000006181
摘要

Objective: To develop machine learning (ML) algorithms that predict outcomes following infrainguinal bypass. Summary Background Data: Infrainguinal bypass for peripheral artery disease (PAD) carries significant surgical risks; however, outcome prediction tools remain limited. Methods: The Vascular Quality Initiative (VQI) database was used to identify patients who underwent infrainguinal bypass for PAD between 2003-2023. We identified 97 potential predictor variables from the index hospitalization (68 pre-operative [demographic/clinical], 13 intra-operative [procedural], and 16 post-operative [in-hospital course/complications]). The primary outcome was 1-year major adverse limb event (MALE; composite of surgical revision, thrombectomy/thrombolysis, or major amputation) or death. Our data were split into training (70%) and test (30%) sets. Using 10-fold cross-validation, we trained 6 ML models using pre-operative features. The primary model evaluation metric was area under the receiver operating characteristic curve (AUROC). The top-performing algorithm was further trained using intra- and post-operative features. Model robustness was evaluated using calibration plots and Brier scores. Results: Overall, 59,784 patients underwent infrainguinal bypass and 15,942 (26.7%) developed 1-year MALE/death. The best pre-operative prediction model was XGBoost, achieving an AUROC (95% CI) of 0.94 (0.93-0.95). In comparison, logistic regression had an AUROC (95% CI) of 0.61 (0.59-0.63). Our XGBoost model maintained excellent performance at the intra- and post-operative stages, with AUROC’s (95% CI’s) of 0.94 (0.93-0.95) and 0.96 (0.95-0.97), respectively. Calibration plots showed good agreement between predicted and observed event probabilities with Brier scores of 0.08 (pre-operative), 0.07 (intra-operative), and 0.05 (post-operative). Conclusions: ML models can accurately predict outcomes following infrainguinal bypass, outperforming logistic regression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
加油加油发布了新的文献求助10
3秒前
Nia发布了新的文献求助10
4秒前
cff发布了新的文献求助10
5秒前
LLL发布了新的文献求助30
5秒前
852应助Robin采纳,获得10
12秒前
今后应助devilito采纳,获得30
13秒前
14秒前
嘎嘎嘎嘎完成签到,获得积分10
14秒前
15秒前
cff完成签到,获得积分10
15秒前
19秒前
20秒前
22秒前
完美世界应助Robin采纳,获得10
23秒前
24秒前
XM发布了新的文献求助10
25秒前
彪壮的小玉完成签到,获得积分10
34秒前
科研通AI5应助dhua采纳,获得30
37秒前
甜甜圈完成签到,获得积分20
38秒前
bc应助ddh采纳,获得30
41秒前
42秒前
45秒前
kai发布了新的文献求助10
47秒前
devilito发布了新的文献求助30
49秒前
49秒前
364zdk完成签到 ,获得积分10
49秒前
Tink完成签到,获得积分10
51秒前
52秒前
新晋学术小生完成签到 ,获得积分10
52秒前
53秒前
54秒前
刘搞笑发布了新的文献求助10
54秒前
善学以致用应助oia采纳,获得10
55秒前
caimeng发布了新的文献求助10
56秒前
56秒前
小苗发布了新的文献求助10
57秒前
领导范儿应助纯真的笑容采纳,获得10
58秒前
jtj完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778761
求助须知:如何正确求助?哪些是违规求助? 3324341
关于积分的说明 10217907
捐赠科研通 3039436
什么是DOI,文献DOI怎么找? 1668081
邀请新用户注册赠送积分活动 798544
科研通“疑难数据库(出版商)”最低求助积分说明 758415