亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Application of machine learning‐based read‐across structure‐property relationship (RASPR) as a new tool for predictive modelling: Prediction of power conversion efficiency (PCE) for selected classes of organic dyes in dye‐sensitized solar cells (DSSCs)

数量结构-活动关系 计算机科学 联营 分子描述符 人工智能 机器学习 数据挖掘 化学信息学 相似性(几何) 生物信息学 特征选择 生物系统 化学 计算化学 图像(数学) 基因 生物 生物化学
作者
Souvik Pore,Arkaprava Banerjee,Kunal Roy
出处
期刊:Molecular Informatics [Wiley]
卷期号:43 (4) 被引量:14
标识
DOI:10.1002/minf.202300210
摘要

Abstract The application of various in‐silico ‐based approaches for the prediction of various properties of materials has been an effective alternative to experimental methods. Recently, the concepts of Quantitative structure‐property relationship (QSPR) and read‐across (RA) methods were merged to develop a new emerging chemoinformatic tool: read‐across structure‐property relationship (RASPR). The RASPR method can be applicable to both large and small datasets as it uses various similarity and error‐based measures. It has also been observed that RASPR models tend to have an increased external predictivity compared to the corresponding QSPR models. In this study, we have modeled the power conversion efficiency (PCE) of organic dyes used in dye‐sensitized solar cells (DSSCs) by using the quantitative RASPR (q‐RASPR) method. We have used relatively larger classes of organic dyes–Phenothiazines (n=207), Porphyrins (n=281), and Triphenylamines (n=229) for the modelling purpose. We have divided each of the datasets into training and test sets in 3 different combinations, and with the training sets we have developed three different QSPR models with structural and physicochemical descriptors and validated them with the corresponding test sets. These corresponding modeled descriptors were used to calculate the RASPR descriptors using a Java‐based tool RASAR Descriptor Calculator v2.0 ( https://sites.google.com/jadavpuruniversity.in/dtc‐lab‐software/home ), and then data fusion was performed by pooling the previously selected structural and physicochemical descriptors with the calculated RASPR descriptors. Further feature selection algorithm was employed to develop the final RASPR PLS models. Here, we also developed different machine learning (ML) models with the descriptors selected in the QSPR PLS and RASPR PLS models, and it was found that models with RASPR descriptors superseded in external predictivity the models with only structural and physicochemical descriptors: RMSEP reduced for phenothiazines from 1.16–1.25 to 1.07–1.18, for porphyrins from 1.60–1.79 to 1.45–1.53, for triphenylamines from 1.27–1.54 to 1.20–1.47.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隋盈春发布了新的文献求助10
2秒前
在水一方应助hzk采纳,获得10
7秒前
8秒前
9秒前
超帅的碱完成签到,获得积分10
10秒前
隋盈春完成签到,获得积分20
14秒前
28秒前
CipherSage应助飘着的鬼采纳,获得10
29秒前
浮游应助科研通管家采纳,获得10
41秒前
orixero应助科研通管家采纳,获得10
41秒前
浮游应助科研通管家采纳,获得10
41秒前
41秒前
高挑的涛发布了新的文献求助10
41秒前
111发布了新的文献求助10
53秒前
搜集达人应助123采纳,获得10
57秒前
gulihong完成签到,获得积分10
59秒前
dfhjsd完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Siren发布了新的文献求助10
1分钟前
段皖顺完成签到 ,获得积分10
1分钟前
1分钟前
123发布了新的文献求助10
1分钟前
桐桐应助记得叫我叔叔采纳,获得10
1分钟前
女朋友跟玩地狱火的小学生跑了完成签到,获得积分10
1分钟前
pegasus0802完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
大气踏歌发布了新的文献求助10
1分钟前
1分钟前
TBI发布了新的文献求助10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
洪武发布了新的文献求助10
2分钟前
丁一发布了新的文献求助10
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482254
求助须知:如何正确求助?哪些是违规求助? 4583174
关于积分的说明 14388761
捐赠科研通 4512190
什么是DOI,文献DOI怎么找? 2472717
邀请新用户注册赠送积分活动 1458988
关于科研通互助平台的介绍 1432363