Radiotherapy Sensitivity Prediction For Glioma Based On Graph Convolutional Networks

计算机科学 放射治疗 分类器(UML) 图形 人工智能 投票 节点(物理) 卷积神经网络 辐射灵敏度 机器学习 模式识别(心理学) 理论计算机科学 医学 辐照 物理 结构工程 政治 政治学 核物理学 内科学 法学 工程类
作者
Haojie Duan,Jinhua Yu,Mingyuan Pan,Chunxia Ni,Lei Han,Yiping Yang,Yan Wang,Zhaoyu Hu
标识
DOI:10.1109/cisp-bmei60920.2023.10373363
摘要

Radiotherapy plays an important role in the treatment of glioma, and predicting radiotherapy sensitivity can help physicians develop more individualized treatment plans. However, few studies have used deep learning for glioma radiotherapy sensitivity. To better explore the impact of the relationship between tumor and neighboring regions on radiotherapy, we applied Graph Convolutional Networks (GCN) to explore predicting radiotherapy sensitivity. Firstly, we use the tumor core and the adjacent region as the nodes, where we use the radiotherapy Planning Target Volume (PTV) as the adjacent region. Secondly, we use the relationship between the tumor core and the PTV as the connected edge relationship. Finally, the Radiomics Features of each region are extracted as the node features. In this way, we construct the graph and use GCN to learn the representation of nodes in the graph to capture the structural information and association relationships among nodes for the prediction of radiotherapy sensitivity. In addition, we experimented with different node construction approaches and modular construction models. We used slice-level data to construct the graph and used a hard voting method to predict the labeling of patients. The experimental results show that our proposed node construction approach and GCN model achieve 93% accuracy after voting, which is an 11% improvement in accuracy compared to the traditional classifier.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
happy完成签到,获得积分10
1秒前
1秒前
2秒前
柔弱的老三完成签到,获得积分10
3秒前
香蕉觅云应助博修采纳,获得10
3秒前
3秒前
李晨光完成签到,获得积分10
3秒前
伤心小肥子完成签到,获得积分10
4秒前
阅遍SCI完成签到,获得积分10
4秒前
Jasper应助iop采纳,获得10
5秒前
5秒前
5秒前
九川发布了新的文献求助30
6秒前
嗦了蜜发布了新的文献求助10
7秒前
杳鸢完成签到,获得积分0
7秒前
8秒前
8秒前
彭于晏应助冰海采纳,获得10
9秒前
李新悦发布了新的文献求助10
9秒前
10秒前
jia完成签到 ,获得积分10
10秒前
ycw123发布了新的文献求助10
11秒前
英姑应助姜平凡采纳,获得20
11秒前
believe完成签到,获得积分10
11秒前
果汁狸发布了新的文献求助10
11秒前
医学生Mavis完成签到,获得积分10
12秒前
bainwei完成签到,获得积分10
13秒前
14秒前
CCC发布了新的文献求助10
15秒前
阿飞发布了新的文献求助10
15秒前
ATREE发布了新的文献求助10
16秒前
17秒前
忞航发布了新的文献求助20
17秒前
喜悦的向日葵完成签到,获得积分10
17秒前
18秒前
大力的宝川完成签到 ,获得积分10
19秒前
天下无敌完成签到 ,获得积分10
19秒前
20秒前
20秒前
温暖的皮皮虾完成签到,获得积分10
20秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798842
求助须知:如何正确求助?哪些是违规求助? 3344585
关于积分的说明 10320753
捐赠科研通 3061034
什么是DOI,文献DOI怎么找? 1679982
邀请新用户注册赠送积分活动 806813
科研通“疑难数据库(出版商)”最低求助积分说明 763386