Citrus Diseases and Pests Detection Model Based on Self-Attention YOLOV8

计算机科学 棱锥(几何) 还原(数学) 计算复杂性理论 人工智能 目标检测 模式识别(心理学) 算法 数学 几何学
作者
Dehuan Luo,Yueju Xue,Xinru Deng,Bin Yang,Haifei Chen,Zhujiang Mo
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 139872-139881 被引量:23
标识
DOI:10.1109/access.2023.3340148
摘要

To accurately detect citrus diseases and pests in real time, even in complex natural environments, this study proposes a Light-SA YOLOV8 (Lightweight Self-Attention YOLOV8) model. Based on YOLOV8, the model introduces the BRA self-attention mechanism module before the SPPF layer in the backbone to overcome challenges posed by complex backgrounds, such as uneven lighting and reflections on citrus leaves and fruits, and achieve flexible computation allocation and content awareness. And, the FasterNet Block is also introduced into the backbone to decrease the computational complexity. Moreover, to enhance precision and computational efficiency for citrus diseases and pests, a new feature fusion technique, known as the AFPN (asymptotic characteristic pyramid network) structure, is employed at the Neck. The constructed dataset includes five types of diseases: anthracnose, citrus canker, melanosis, scab, and bacterial brown spot-along with one type of insect pest, the citrus shallow leaf moth. Experimental results demonstrate that the Light-SA YOLOV8 model achieves an average detection accuracy of 92.6% for the six types of diseases and pests on test set. The mAP@0.5 reaches 92.5%, and it takes only 3.4ms to detect a single image. Moreover, the model's memory consumption is just 4.5MB. Compared with the original YOLOV8n, the Light-SA YOLOV8 model exhibits significant improvements in detection accuracy and computational efficiency. It achieves a 2.8% increase in precision(P), a 0.9% increase in mAP@0.5, and a 20.7% reduction in computational load. Furthermore, when compared to Faster RCNN, YOLOV3-tiny, YOLOV8n, and YOLOV5n, the Light-SA YOLOV8 model achieves an average increase in detection precision of 8.8%, 6%, 2.8%, and 1.8%, respectively. The proposed Light-SA YOLOV8 model effectively mitigates the challenges posed by complex backgrounds, ensuring accurate and fast detection of citrus pests and diseases in images. This research offers valuable insights for real-time plant pest and disease detection in natural environments with unstructured backgrounds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坤坤发布了新的文献求助10
1秒前
1秒前
lkkkkkkkkkk发布了新的文献求助30
2秒前
haaaa完成签到,获得积分20
2秒前
4秒前
haaaa发布了新的文献求助10
5秒前
xinyue946983完成签到,获得积分10
6秒前
科研通AI6应助杨杨杨采纳,获得10
6秒前
秋子发布了新的文献求助10
7秒前
坤坤完成签到,获得积分20
7秒前
小焦完成签到,获得积分10
7秒前
8秒前
王肖宁完成签到 ,获得积分20
8秒前
8秒前
9秒前
vicky发布了新的文献求助10
9秒前
Wang1991发布了新的文献求助10
13秒前
13秒前
14秒前
15秒前
15秒前
16秒前
学术仓鼠发布了新的文献求助10
16秒前
urkk发布了新的文献求助10
19秒前
19秒前
20秒前
20秒前
foreverchoi发布了新的文献求助10
21秒前
21秒前
23秒前
土土发布了新的文献求助10
23秒前
23秒前
25秒前
26秒前
Owen应助foreverchoi采纳,获得10
26秒前
26秒前
dawnshea发布了新的文献求助10
26秒前
李健应助满意宛筠采纳,获得10
27秒前
28秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4624903
求助须知:如何正确求助?哪些是违规求助? 4024158
关于积分的说明 12456491
捐赠科研通 3708850
什么是DOI,文献DOI怎么找? 2045708
邀请新用户注册赠送积分活动 1077703
科研通“疑难数据库(出版商)”最低求助积分说明 960223