Well placement optimization with a novel swarm intelligence optimization algorithm: Sparrow Search Algorithm

粒子群优化 计算机科学 数学优化 算法 人口 超参数 灵敏度(控制系统) 数学 工程类 电子工程 社会学 人口学
作者
S. Mostafa Tabatabaei,Mojtaba Asadian-Pakfar,Behnam Sedaee
标识
DOI:10.1016/j.geoen.2023.212291
摘要

Well placement optimization plays a critical role in developing oil and gas reservoirs, presenting a formidable challenge due to the high dimension of the search space and computational requirements. This research addresses the simultaneous optimization of well location and flow rates for production and injection wells in a heterogeneous oil reservoir located in southwestern Iran. The objective function employed to evaluate the proposed solutions generated by the Sparrow Search Algorithm (SSA) is the net present value (NPV). To enhance the performance of SSA, a sensitivity analysis is conducted to tune its hyperparameters, while keeping the epochs and population size fixed to manage runtime effectively. The study tackles the challenges posed by reservoir heterogeneity and the time-consuming nature of the optimization process through various strategies. The decision variables are reduced to a reasonable order, and a quality index is introduced to guide the algorithm towards exploring areas of the reservoir with higher potential. Furthermore, runtime is utilized as a termination condition to optimize computational time. The inclusion of the quality map significantly improves the NPV outcomes, allowing for more effective well placement decisions. Physical constraints related to well placement are handled using a penalty method and map cleaning techniques. Having addressed these challenges, the study investigates the impact of fixed parameters on the optimization results. By conducting an optimization run with 100 epochs, comparable outcomes to the case of 50 epochs (with a 5% improvement) are achieved, albeit with a longer runtime of 20 h. However, increasing the population size substantially raises both runtime and computational costs. Therefore, runtime is considered a practical termination condition, and efficient runtimes of 10 and 15 h are selected for this specific problem. The results indicate that a population size of 25 sparrows outperforms the cases with 50 and 100 epochs, respectively, yielding slightly higher NPV values. Furthermore, the performance of SSA is compared to that of Particle Swarm Optimization (PSO) in terms of NPV, convergence, and runtime. The results highlight the advantages of SSA, demonstrating faster convergence and achieving higher NPV values compared to PSO. However, the computational cost of SSA should be taken into consideration, as it requires significantly more time to reach the optimal solution compared to PSO. Overall, this research emphasizes the high potential of the SSA algorithm for optimizing well placements and its practical relevance in real-world oil industry cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Johnpick发布了新的文献求助10
1秒前
Johnson完成签到 ,获得积分10
1秒前
2秒前
果汁完成签到,获得积分10
2秒前
调皮万宝路完成签到,获得积分10
2秒前
sally完成签到,获得积分20
2秒前
2秒前
顾矜应助TangQQ采纳,获得10
3秒前
打工人发布了新的文献求助10
3秒前
Alan完成签到,获得积分10
4秒前
4秒前
4秒前
兴奋的万声完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
柯飞扬发布了新的文献求助10
5秒前
还有晴天发布了新的文献求助30
6秒前
健壮不斜完成签到 ,获得积分10
6秒前
沉默士萧发布了新的文献求助30
8秒前
8秒前
8秒前
大气早晨发布了新的文献求助10
8秒前
香蕉初瑶发布了新的文献求助10
9秒前
9秒前
宇宙第一甜妹完成签到 ,获得积分10
10秒前
四然完成签到,获得积分10
11秒前
顾矜应助打工人采纳,获得10
11秒前
11秒前
lpp发布了新的文献求助10
11秒前
大气建辉完成签到 ,获得积分10
12秒前
12秒前
鲤鱼羿发布了新的文献求助10
13秒前
pure123发布了新的文献求助30
13秒前
上官若男应助peng采纳,获得10
13秒前
还有晴天完成签到,获得积分10
14秒前
CarterXD完成签到,获得积分10
14秒前
大气早晨完成签到,获得积分10
14秒前
14秒前
111发布了新的文献求助10
15秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816810
求助须知:如何正确求助?哪些是违规求助? 3360247
关于积分的说明 10407179
捐赠科研通 3078205
什么是DOI,文献DOI怎么找? 1690660
邀请新用户注册赠送积分活动 813983
科研通“疑难数据库(出版商)”最低求助积分说明 767924