Multiple faults separation and identification of rolling bearings based on time-frequency spectrogram

光谱图 方位(导航) 断层(地质) 包络线(雷达) 振动 时频分析 信号(编程语言) 计算机科学 短时傅里叶变换 工程类 模式识别(心理学) 傅里叶变换 人工智能 声学 傅里叶分析 数学 滤波器(信号处理) 计算机视觉 电信 雷达 数学分析 物理 地震学 程序设计语言 地质学
作者
Ming Lv,Changfeng Yan,Jianxiong Kang,Jiadong Meng,Zonggang Wang,Shengqiang Li,Bin Liu
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:23 (4): 2040-2067 被引量:6
标识
DOI:10.1177/14759217231197110
摘要

Rolling bearings play a crucial role as components in rotating machinery across various industrial fields. Bearing faults can potentially lead to severe accidents in operating machines. Therefore, condition monitoring and fault diagnosis of rolling bearings are essential for preventing equipment failures. Multiple faults are a common occurrence resulting from the prolonged operation of rolling bearings, and numerous research efforts have been made to study multiple faults in different components of the bearing. However, diagnosing multiple faults in a single component of the rolling bearing still remains a highly challenging task. In this paper, a multiple faults separation and identification method based on time-frequency (TF) spectrogram (TFS) is proposed for vibration signals of rolling bearings. Firstly, the fast path optimization method is improved to match the TFS of original vibration signals in bearing faults generated by short-time Fourier transform. Then multiple TF curves are extracted from the TFS by the proposed multiple transient component curves extraction method based on the improved fast path optimization method. With the fault characteristic period, a classification criterion is introduced to separate TF curves. Secondly, a TF masking method is constructed to retain the TF information closely related to fault components of vibration signals. Finally, the novel TF representation can be obtained to develop signal reconstruction, and multiple faults can be detected based on envelope analysis separately. The experiments from rolling bearings with multiple faults on raceways are used to verify the effectiveness of the proposed methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
得意洋洋发布了新的文献求助10
刚刚
CL发布了新的文献求助10
1秒前
尉迟希望发布了新的文献求助10
4秒前
LiAlan发布了新的文献求助10
4秒前
fang应助岩崖采纳,获得10
4秒前
6秒前
6秒前
微笑绿旋应助真实的枕头采纳,获得30
6秒前
6秒前
7秒前
feijelly完成签到,获得积分10
7秒前
最佳完成签到,获得积分10
7秒前
解达完成签到,获得积分10
8秒前
zyc1111111完成签到,获得积分10
9秒前
青q完成签到,获得积分10
10秒前
李健应助l98916采纳,获得10
11秒前
CL完成签到,获得积分10
12秒前
最佳发布了新的文献求助10
12秒前
复杂数据线完成签到,获得积分10
13秒前
寒冷的寻菱完成签到,获得积分10
13秒前
无花果应助缥缈青烟采纳,获得10
14秒前
16秒前
17秒前
烟花应助俞安珊采纳,获得10
18秒前
青q发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
21秒前
研友_VZG7GZ应助zhang采纳,获得10
21秒前
21秒前
21秒前
天天快乐应助科研通管家采纳,获得10
22秒前
小蘑菇应助科研通管家采纳,获得10
22秒前
孙燕应助科研通管家采纳,获得10
22秒前
852应助科研通管家采纳,获得10
22秒前
yydragen应助科研通管家采纳,获得30
22秒前
格局打开发布了新的文献求助10
22秒前
香蕉觅云应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
22秒前
22秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4032424
求助须知:如何正确求助?哪些是违规求助? 3571005
关于积分的说明 11363157
捐赠科研通 3301345
什么是DOI,文献DOI怎么找? 1817377
邀请新用户注册赠送积分活动 891549
科研通“疑难数据库(出版商)”最低求助积分说明 814300