生物制氢
暗发酵
制氢
化学
微生物联合体
制浆造纸工业
废水
污水处理
工业废水处理
间歇式反应器
序批式反应器
产量(工程)
废物管理
氢
材料科学
环境科学
微生物
细菌
环境工程
催化作用
有机化学
冶金
生物
工程类
遗传学
作者
Mohamed S. Hellal,Filip Gamoń,Grzegorz Cema,Gamal K. Hassan,Gehad G. Mohamed,Aleksandra Ziembińska-Buczyńska
标识
DOI:10.1016/j.enconman.2023.117824
摘要
Biohydrogen production from industrial waste has gained a significant attention as a sustainable energy source. In this study, the enrichment of biohydrogen production from pretreated dissolved air flotation (DAF) sludge, generated from food industry wastewater treatment plants, was investigated using SiO2@Cu-Ag dendrites core–shell nanostructure (NS). The effect of NS on the changes of the microbial community and biohydrogen yield was evaluated through batch and continuous tests. In batch mode, various nanomaterial doses were investigated with several concentrations ranging from 20 to 50 mg/L for hydrogen production using glucose as a substrate. The optimum core–shell NS amount was 40 mg/L, achieving a maximum H2 yield of 163 mL/g volatile solids (VS) compared to the control's 79 mL/g VS. However, 50 mg/L NS inhibited most bacteria in the sludge. The continuous experiment used a continuous stirring tank reactor (CSTR) with 40 mg/L SiO2@Cu-Ag core–shell NS and pretreated industrial sludge as substrate. The H2 yield increased to 115 L/kg VS compared to the control reactor's 89 L/kg VS. The gas analysis showed compositional proportions of 83 % H2, 7 % CO2, and 4.5 % methane, while the microbial community analysis indicated the development of hydrogen-producing species such as Clostridium. In conclusion, SiO2@Cu-Ag core–shell NS addition enhanced anaerobic degradation of organic matter and its conversion to biohydrogen. The selected nanomaterial can be used for an effective continuous treatment system for industrial sludge while promoting dark fermentation.
科研通智能强力驱动
Strongly Powered by AbleSci AI