Hand gesture classification framework leveraging the entropy features from sEMG signals and VMD augmented multi-class SVM

支持向量机 计算机科学 模式识别(心理学) 人工智能 熵(时间箭头) 分类器(UML) 朴素贝叶斯分类器 手势 机器学习 物理 量子力学
作者
T. Prabhavathy,Vinodh Kumar Elumalai,E Balaji
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 121972-121972 被引量:33
标识
DOI:10.1016/j.eswa.2023.121972
摘要

To improve the classification accuracy of hand movements from sEMG signals, this paper puts forward a unified hand gesture classification framework which exploits the potentials of variational mode decomposition (VMD) and multi-class support vector machine (SVM). Acquiring the sEMG signals from 25 intact subjects for ten functional activities in real-time, we implement a non-recursive adaptive decomposition technique to sEMG signals and perform power spectral analysis to identify the dominant narrow-band intrinsic mode functions (IMFs) that contain prominent biomarkers. Subsequently, to compute the optimal feature vectors from a set of entropy measures, this work investigates the performance of two techniques namely minimum redundancy and maximum relevance (MRMR) technique and kernel principal component analysis (kPCA). After extracting the optimal set of entropy features, the proposed approach implements a multi-class SVM based on one-vs-one (OVO) strategy to classify the hand gestures. The performance of the multi-class SVM compared with those of the K-nearest neighbor (KNN) and naïve bayes (NB) classifiers highlight that multi-class SVM offers superior performance with an average classification accuracy of 99.98%. Moreover, for statistical analysis of the experimental results, this work performs Friedman test to analyze the significance of the SVM, KNN and NB classifier performances. Finally, the performance comparison of the proposed approach with those of the state-of-the-art techniques highlights the superiority of the proposed framework to improve the hand gesture classification accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Luhh发布了新的文献求助10
刚刚
虎虎虎完成签到,获得积分10
刚刚
1秒前
2秒前
2秒前
甜蜜似狮发布了新的文献求助10
2秒前
3秒前
3秒前
不配.应助多情奇异果采纳,获得100
3秒前
3秒前
4秒前
令狐擎宇发布了新的文献求助10
5秒前
5秒前
轻松凡完成签到,获得积分10
6秒前
7秒前
科研牛马发布了新的文献求助10
7秒前
求索发布了新的文献求助10
8秒前
晓竹发布了新的文献求助10
8秒前
8秒前
10秒前
KK发布了新的文献求助10
10秒前
t通完成签到,获得积分10
11秒前
隐形曼青应助知性的飞瑶采纳,获得10
11秒前
大模型应助sasasas采纳,获得10
11秒前
冒如怿发布了新的文献求助10
12秒前
berg完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
Ava应助t通采纳,获得10
14秒前
15秒前
小周同学完成签到 ,获得积分10
15秒前
lijun完成签到,获得积分20
15秒前
15秒前
甜甜的满天完成签到,获得积分10
15秒前
赘婿应助蓝林采纳,获得10
16秒前
16秒前
科研go完成签到,获得积分10
16秒前
NexusExplorer应助神鸢采纳,获得10
17秒前
完美世界应助典雅的俊驰采纳,获得10
17秒前
在水一方应助张凯茜采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5547632
求助须知:如何正确求助?哪些是违规求助? 4633117
关于积分的说明 14629382
捐赠科研通 4574643
什么是DOI,文献DOI怎么找? 2508462
邀请新用户注册赠送积分活动 1484914
关于科研通互助平台的介绍 1455971