Hand gesture classification framework leveraging the entropy features from sEMG signals and VMD augmented multi-class SVM

支持向量机 计算机科学 模式识别(心理学) 人工智能 熵(时间箭头) 分类器(UML) 朴素贝叶斯分类器 手势 机器学习 物理 量子力学
作者
T. Prabhavathy,Vinodh Kumar Elumalai,E Balaji
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 121972-121972 被引量:24
标识
DOI:10.1016/j.eswa.2023.121972
摘要

To improve the classification accuracy of hand movements from sEMG signals, this paper puts forward a unified hand gesture classification framework which exploits the potentials of variational mode decomposition (VMD) and multi-class support vector machine (SVM). Acquiring the sEMG signals from 25 intact subjects for ten functional activities in real-time, we implement a non-recursive adaptive decomposition technique to sEMG signals and perform power spectral analysis to identify the dominant narrow-band intrinsic mode functions (IMFs) that contain prominent biomarkers. Subsequently, to compute the optimal feature vectors from a set of entropy measures, this work investigates the performance of two techniques namely minimum redundancy and maximum relevance (MRMR) technique and kernel principal component analysis (kPCA). After extracting the optimal set of entropy features, the proposed approach implements a multi-class SVM based on one-vs-one (OVO) strategy to classify the hand gestures. The performance of the multi-class SVM compared with those of the K-nearest neighbor (KNN) and naïve bayes (NB) classifiers highlight that multi-class SVM offers superior performance with an average classification accuracy of 99.98%. Moreover, for statistical analysis of the experimental results, this work performs Friedman test to analyze the significance of the SVM, KNN and NB classifier performances. Finally, the performance comparison of the proposed approach with those of the state-of-the-art techniques highlights the superiority of the proposed framework to improve the hand gesture classification accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黑米粥发布了新的文献求助10
1秒前
科研通AI5应助小泽采纳,获得10
1秒前
2秒前
彭于晏应助自由的冬易采纳,获得10
3秒前
勤劳的含蕾完成签到,获得积分10
3秒前
JY发布了新的文献求助10
4秒前
Andy发布了新的文献求助10
5秒前
zpq完成签到,获得积分20
6秒前
7秒前
8秒前
9秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
13秒前
14秒前
Ava应助lll采纳,获得10
14秒前
阿鹏发布了新的文献求助10
15秒前
所所应助JY采纳,获得10
15秒前
16秒前
16秒前
17秒前
冰魂应助yyauthor采纳,获得20
17秒前
无私的谷槐完成签到,获得积分10
17秒前
18秒前
一朵小鲜花儿完成签到,获得积分10
19秒前
拉基发布了新的文献求助10
19秒前
20秒前
酷炫的梦竹完成签到 ,获得积分10
20秒前
23秒前
追寻地坛发布了新的文献求助30
23秒前
Ken发布了新的文献求助10
23秒前
23秒前
科研通AI2S应助薛之谦采纳,获得10
24秒前
Hamed22发布了新的文献求助10
24秒前
谢诚杰发布了新的文献求助10
25秒前
26秒前
丘比特应助scn666采纳,获得10
27秒前
27秒前
27秒前
黑米粥发布了新的文献求助10
28秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3867367
求助须知:如何正确求助?哪些是违规求助? 3409750
关于积分的说明 10664684
捐赠科研通 3133945
什么是DOI,文献DOI怎么找? 1728674
邀请新用户注册赠送积分活动 833052
科研通“疑难数据库(出版商)”最低求助积分说明 780550