已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An Artificial Neural Network Model for Predicting Postoperative Facial Nerve Outcomes After Vestibular Schwannoma Surgery

面神经 医学 神经鞘瘤 前庭系统 听神经瘤 外科 内耳道 接收机工作特性 听力学 内科学
作者
Youssef M. Zohdy,Ali Alawieh,David P. Bray,Gustavo Pradilla,Tomas Gárzón-Muvdi,Yasmine A. Ashram
出处
期刊:Neurosurgery [Lippincott Williams & Wilkins]
卷期号:94 (4): 805-812 被引量:1
标识
DOI:10.1227/neu.0000000000002757
摘要

The emergence of machine learning models has significantly improved the accuracy of surgical outcome predictions. This study aims to develop and validate an artificial neural network (ANN) model for predicting facial nerve (FN) outcomes after vestibular schwannoma (VS) surgery using the proximal-to-distal amplitude ratio (P/D) along with clinical variables.This retrospective study included 71 patients who underwent VS resection between 2018 and 2022. At the end of surgery, the FN was stimulated at the brainstem (proximal) and internal acoustic meatus (distal) and the P/D was calculated. Postoperative FN function was assessed using the House-Brackmann grading system at discharge (short-term) and after 9-12 months (long-term). House-Brackmann grades I-II were considered good outcome, whereas grades III-VI were considered fair/poor. An ANN model was constructed, and the performance of the model was evaluated using the area under the ROC curve for internal validation and accuracy, sensitivity, specificity, and positive and negative predictive values for external validation.The short-term FN outcome was grades I-II in 57.7% and grades III-VI in 42.3% of patients. Initially, a model using P/D had an area under the curve of 0.906 (internal validation) and an accuracy of 89.1% (95% CI: 68.3%-98.8%) (external validation) for predicting good vs fair/poor short-term FN outcomes. The model was then refined to include only muscles with a P/D with a proximal latency between 6 and 8 ms. This improved the accuracy to 100% (95% CI: 79%-100%). Integrating clinical variables (patient's age, tumor size, and preoperative HB grade) in addition to P/D into the model did not significantly improve the predative value. A model was then created to predict the long-term FN outcome using P/D with latencies between 6 and 8 ms and had an accuracy of 90.9% (95% CI: 58.7%-99.8%).ANN models incorporating P/D can be a valuable tool for predicting FN outcomes after VS surgery. Refining the model to include P/D with latencies between 6 and 8 ms further improves the model's prediction. A user-friendly interface is provided to facilitate the implementation of this model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
蟾蜍老爆发布了新的文献求助10
2秒前
你好好好发布了新的文献求助10
4秒前
4秒前
Jenny发布了新的文献求助10
5秒前
梦_筱彩完成签到 ,获得积分10
6秒前
无奈以南完成签到 ,获得积分10
6秒前
范丞丞完成签到 ,获得积分10
7秒前
8秒前
impending完成签到,获得积分10
11秒前
SWJ发布了新的文献求助10
13秒前
15秒前
SWJ完成签到 ,获得积分10
18秒前
20秒前
粽子完成签到,获得积分10
22秒前
czz014完成签到,获得积分10
22秒前
和谐蛋蛋完成签到,获得积分10
23秒前
天天快乐应助Jenny采纳,获得30
24秒前
lixuebin完成签到 ,获得积分10
26秒前
26秒前
空空完成签到,获得积分20
27秒前
你好好好发布了新的文献求助10
28秒前
阿瓜发布了新的文献求助10
31秒前
清秀的懿轩完成签到 ,获得积分10
33秒前
36秒前
xiaopacai完成签到 ,获得积分10
36秒前
zhan20200503完成签到,获得积分10
37秒前
38秒前
39秒前
我是老大应助SWJ采纳,获得10
43秒前
谢芝朗发布了新的文献求助10
44秒前
沉默的书桃完成签到 ,获得积分10
47秒前
研友_ndDGVn完成签到,获得积分10
47秒前
50秒前
丁青完成签到,获得积分10
51秒前
孤独尔白完成签到,获得积分10
54秒前
聪慧曲奇发布了新的文献求助10
54秒前
科研通AI5应助丁青采纳,获得10
54秒前
你好好好完成签到,获得积分10
55秒前
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800867
求助须知:如何正确求助?哪些是违规求助? 3346351
关于积分的说明 10329161
捐赠科研通 3062813
什么是DOI,文献DOI怎么找? 1681207
邀请新用户注册赠送积分活动 807442
科研通“疑难数据库(出版商)”最低求助积分说明 763702