Explainable Classification of Benign-Malignant Pulmonary Nodules With Neural Networks and Information Bottleneck

瓶颈 计算机科学 人工智能 可视化 肺癌 编码器 人工神经网络 特征(语言学) 模式识别(心理学) 深度学习 医学 病理 语言学 哲学 嵌入式系统 操作系统
作者
Haixing Zhu,Weipeng Liu,Zhifan Gao,Heye Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (2): 2028-2039 被引量:4
标识
DOI:10.1109/tnnls.2023.3303395
摘要

Computerized tomography (CT) is a clinically primary technique to differentiate benign-malignant pulmonary nodules for lung cancer diagnosis. Early classification of pulmonary nodules is essential to slow down the degenerative process and reduce mortality. The interactive paradigm assisted by neural networks is considered to be an effective means for early lung cancer screening in large populations. However, some inherent characteristics of pulmonary nodules in high-resolution CT images, e.g., diverse shapes and sparse distribution over the lung fields, have been inducing inaccurate results. On the other hand, most existing methods with neural networks are dissatisfactory from a lack of transparency. In order to overcome these obstacles, a united framework is proposed, including the classification and feature visualization stages, to learn distinctive features and provide visual results. Specifically, a bilateral scheme is employed to synchronously extract and aggregate global-local features in the classification stage, where the global branch is constructed to perceive deep-level features and the local branch is built to focus on the refined details. Furthermore, an encoder is built to generate some features, and a decoder is constructed to simulate decision behavior, followed by the information bottleneck viewpoint to optimize the objective. Extensive experiments are performed to evaluate our framework on two publicly available datasets, namely, 1) the Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) and 2) the Lung and Colon Histopathological Image Dataset (LC25000). For instance, our framework achieves 92.98% accuracy and presents additional visualizations on the LIDC. The experiment results show that our framework can obtain outstanding performance and is effective to facilitate explainability. It also demonstrates that this united framework is a serviceable tool and further has the scalability to be introduced into clinical research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
null发布了新的文献求助10
2秒前
Ava应助曾经电源采纳,获得10
2秒前
3秒前
3秒前
IHVHI发布了新的文献求助10
5秒前
CornellRong发布了新的文献求助10
5秒前
乐观的颦发布了新的文献求助10
5秒前
善学以致用应助武雨寒采纳,获得10
5秒前
7秒前
7秒前
诺诺完成签到,获得积分10
7秒前
开放灭绝发布了新的文献求助10
9秒前
9秒前
9秒前
深情安青应助稻草人采纳,获得10
9秒前
10秒前
爱窦完成签到 ,获得积分10
10秒前
外向蜡烛发布了新的文献求助10
10秒前
CornellRong完成签到,获得积分10
12秒前
小菜鸡完成签到 ,获得积分10
13秒前
sci来发布了新的文献求助10
13秒前
13秒前
DDS发布了新的文献求助10
14秒前
开放灭绝完成签到,获得积分10
15秒前
李星翰发布了新的文献求助10
16秒前
bbdx完成签到,获得积分10
17秒前
外向蜡烛完成签到,获得积分10
19秒前
dzxwssy发布了新的文献求助10
19秒前
by完成签到,获得积分10
22秒前
22秒前
7777777完成签到,获得积分10
24秒前
sci来完成签到,获得积分10
26秒前
大碗完成签到 ,获得积分10
26秒前
31秒前
32秒前
lxp完成签到,获得积分10
32秒前
33秒前
科研通AI5应助bobo采纳,获得30
33秒前
汉堡包应助我爱Chem采纳,获得10
34秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800411
求助须知:如何正确求助?哪些是违规求助? 3345653
关于积分的说明 10326420
捐赠科研通 3062122
什么是DOI,文献DOI怎么找? 1680875
邀请新用户注册赠送积分活动 807249
科研通“疑难数据库(出版商)”最低求助积分说明 763572