亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Near-infrared spectroscopy combined with machine learning for rapid identification of Atractylodis rhizoma decoction pieces

汤剂 苍术 人工智能 计算机科学 数学 传统医学 模式识别(心理学) 生物系统 植物 生物 医学 病理 中医药 替代医学
作者
Zhiwei Jiang,Ke Jin,Lingjiao Zhong,Ying Zheng,Qingsong Shao,Ailian Zhang
出处
期刊:Industrial Crops and Products [Elsevier BV]
卷期号:197: 116579-116579 被引量:14
标识
DOI:10.1016/j.indcrop.2023.116579
摘要

As a naturally occurring plant source of essential oil, Atractylodis rhizoma (AR) is of significant economic and therapeutic importance. In modern medical use, it is preferable to process the material into flakes of dried AR. Fake products often pass off as authentic AR, and products from non-primary production areas pass off as primary production areas to pursue high profits. In this study, near-infrared spectroscopy (NIRS) was developed to better identify the authenticity, botanical sources, and geographical origins of AR. The impacts of pretreatment, selection of characteristic wavenumbers, and parameter optimization on model performance were compared and analyzed. Five different types of machine learning methods were used. The results showed that the extreme learning machine (ELM) had the best effect in identifying the authenticity of AR, while the back propagation neural network (BPNN) had advantages in determining the sources of plants. The support vector classification (SVC) had great potential to pinpoint the geographical origins of Atractylodes lancea (Thunb.) DC. and Atractylodes chinensis (DC.) Koidz. The feasibility of direct spectral acquisition without crushing the sample was also demonstrated. Therefore, NIRS combined with machine learning is a fast, effective, and feasible method to identify the authenticity, botanical sources, and geographical origins of AR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
7秒前
高大觅夏完成签到 ,获得积分10
9秒前
10秒前
11秒前
15秒前
所所应助chenhh采纳,获得10
15秒前
20秒前
Ghiocel完成签到,获得积分10
26秒前
26秒前
珍珠奶茶发布了新的文献求助10
29秒前
徐zhipei完成签到 ,获得积分10
34秒前
35秒前
42秒前
华仔应助可爱的小杨采纳,获得10
51秒前
小乐儿~完成签到,获得积分10
55秒前
57秒前
彭于晏应助科研通管家采纳,获得50
1分钟前
1分钟前
1分钟前
888发布了新的文献求助10
1分钟前
不摇碧莲发布了新的文献求助10
1分钟前
1分钟前
紧张的南风完成签到,获得积分20
1分钟前
1分钟前
Carrido发布了新的文献求助10
1分钟前
麻辣小龙虾完成签到,获得积分10
1分钟前
ranj完成签到,获得积分10
1分钟前
狗头发布了新的文献求助10
1分钟前
chenhh发布了新的文献求助10
1分钟前
brian0326完成签到,获得积分10
1分钟前
大个应助不摇碧莲采纳,获得10
1分钟前
Cosmosurfer完成签到,获得积分10
1分钟前
香菇煲汤完成签到,获得积分10
1分钟前
华仔应助甜蜜乐松采纳,获得10
1分钟前
1分钟前
郗妫完成签到,获得积分10
1分钟前
Ava应助SL采纳,获得10
1分钟前
小w发布了新的文献求助10
1分钟前
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784786
求助须知:如何正确求助?哪些是违规求助? 3330050
关于积分的说明 10244053
捐赠科研通 3045345
什么是DOI,文献DOI怎么找? 1671626
邀请新用户注册赠送积分活动 800524
科研通“疑难数据库(出版商)”最低求助积分说明 759483