Epigenetic regulation of mitochondrial‐endoplasmic reticulum dynamics in kidney diseases

表观遗传学 内质网 生物 细胞生物学 自噬 细胞器 线粒体 未折叠蛋白反应 组蛋白 遗传学 细胞凋亡 DNA 基因
作者
Vishwadeep Shelke,Vinayak Yelgonde,Ajinath Kale,Maciej Lech,Vajir Malek
出处
期刊:Journal of Cellular Physiology [Wiley]
卷期号:238 (8): 1716-1731 被引量:2
标识
DOI:10.1002/jcp.31058
摘要

Kidney diseases are serious health problems affecting >800 million individuals worldwide. The high number of affected individuals and the severe consequences of kidney dysfunction demand an intensified effort toward more effective prevention and treatment. The pathophysiology of kidney diseases is complex and comprises diverse organelle dysfunctions including mitochondria and endoplasmic reticulum (ER). The recent findings prove interactions between the ER membrane and nearly all cell compartments and give new insights into molecular events involved in cellular mechanisms in health and disease. Interactions between the ER and mitochondrial membranes, known as the mitochondria-ER contacts regulate kidney physiology by interacting with each other via membrane contact sites (MCS). ER controls mitochondrial dynamics through ER stress sensor proteins or by direct communication via mitochondria-associated ER membrane to activate signaling pathways such as apoptosis, calcium transport, and autophagy. More importantly, these organelle dynamics are found to be regulated by several epigenetic mechanisms such as DNA methylation, histone modifications, and noncoding RNAs and can be a potential therapeutic target against kidney diseases. However, a thorough understanding of the role of epigenetic regulation of organelle dynamics and their functions is not well understood. Therefore, this review will unveil the role of epigenetic mechanisms in regulating organelle dynamics during various types of kidney diseases. Moreover, we will also shed light on different stress origins in organelles leading to kidney disease. Henceforth, by understanding this we can target epigenetic mechanisms to maintain/control organelle dynamics and serve them as a novel therapeutic approach against kidney diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小张完成签到,获得积分10
刚刚
橘艾完成签到 ,获得积分10
1秒前
byby应助Clearlove采纳,获得10
3秒前
失眠的蓝完成签到,获得积分10
4秒前
5秒前
7秒前
CodeCraft应助张亮采纳,获得50
9秒前
橘艾发布了新的文献求助10
11秒前
ZhongqinLin完成签到,获得积分10
12秒前
马建国发布了新的文献求助10
12秒前
18秒前
Xiaoz完成签到 ,获得积分10
20秒前
23秒前
王佳慧完成签到,获得积分20
24秒前
25秒前
Jasper应助科研通管家采纳,获得10
26秒前
Autor应助科研通管家采纳,获得10
26秒前
科目三应助科研通管家采纳,获得10
26秒前
26秒前
云瑾应助科研通管家采纳,获得10
26秒前
英姑应助科研通管家采纳,获得10
26秒前
Hayat发布了新的文献求助20
26秒前
lxlcx完成签到,获得积分10
28秒前
29秒前
张亮发布了新的文献求助50
30秒前
笑点低中心完成签到,获得积分10
33秒前
33秒前
酸化土壤改良应助Lee采纳,获得10
34秒前
会撒娇的以菱完成签到 ,获得积分10
37秒前
深情安青应助傻傻的盛男采纳,获得10
38秒前
yzzzz完成签到,获得积分10
39秒前
40秒前
长情语蕊发布了新的文献求助10
40秒前
cw123完成签到,获得积分10
45秒前
张亮完成签到,获得积分10
52秒前
Pursue完成签到,获得积分10
52秒前
53秒前
Orange应助坚强的安柏采纳,获得10
54秒前
毅诚菌完成签到,获得积分10
54秒前
56秒前
高分求助中
Formgebungs- und Stabilisierungsparameter für das Konstruktionsverfahren der FiDU-Freien Innendruckumformung von Blech 1000
The Illustrated History of Gymnastics 800
[Echocardiography and tissue Doppler imaging in assessment of haemodynamics in patients with idiopathic, premature ventricular complexes] 600
The role of a multidrug-resistance gene (lemdrl) in conferring vinblastine resistance in Leishmania enriettii 310
機能營養學前瞻(3 Ed.) 300
Improving the ductility and toughness of Fe-Cr-B cast irons 300
Zwischen Selbstbestimmung und Selbstbehauptung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2511607
求助须知:如何正确求助?哪些是违规求助? 2160329
关于积分的说明 5532640
捐赠科研通 1880714
什么是DOI,文献DOI怎么找? 935918
版权声明 564249
科研通“疑难数据库(出版商)”最低求助积分说明 499713