Tikhonov正则化
数学
正规化(语言学)
巴克斯-吉尔伯特法
反问题
先验与后验
适定问题
支持向量机的正则化研究进展
应用数学
扩散方程
解耦(概率)
数学分析
数学优化
计算机科学
控制工程
经济
哲学
工程类
人工智能
经济
认识论
服务(商务)
作者
Jiqiu Wen,Yue Chongwang,Zhuan-Xia Liu,Shijuan Wang
标识
DOI:10.1216/rmj.2023.53.249
摘要
This paper is concerned with the problem of identifying the space-dependent source term and initial value simultaneously for a time-fractional diffusion equation. The inverse problem is ill-posed, and the idea of decoupling it into two operator equations is applied. In order to solve this inverse problem, a fractional Tikhonov regularization method is proposed. Furthermore, the corresponding convergence estimates are presented by using the a priori and a posteriori parameter choice rules. Several numerical examples compared with the classical Tikhonov regularization are constructed for verifying the accuracy and efficiency of the proposed method.
科研通智能强力驱动
Strongly Powered by AbleSci AI