An Efficient Ensemble-based Machine Learning approach for Predicting Chronic Kidney Disease

机器学习 人工智能 随机森林 集成学习 计算机科学 Boosting(机器学习) 支持向量机 分类器(UML) 阿达布思 交叉验证 肾脏疾病 集合预报 医学 内科学
作者
Divyanshi Chhabra,Mamta Juneja,Gautam Chutani
出处
期刊:Current Medical Imaging Reviews [Bentham Science Publishers]
卷期号:20 被引量:5
标识
DOI:10.2174/1573405620666230508104538
摘要

Chronic kidney disease (CKD) is a long-term risk to one's health that can result in kidney failure. CKD is one of today's most serious diseases, and early detection can aid in proper treatment. Machine learning techniques have proven to be reliable in the early medical diagnosis.The paper aims to perform CKD prediction using machine learning classification approaches. The dataset used for the present study for detecting CKD was obtained from the machine learning repository at the University of California, Irvine (UCI).In this study, twelve machine learning-based classification algorithms with full features were used. Since the CKD dataset had a class imbalance issue, the Synthetic Minority Over-Sampling technique (SMOTE) was used to alleviate the problem of class imbalance and review the performance based on machine learning classification models using the K fold cross-validation technique. The proposed work compares the results of twelve classifiers with and without the SMOTE technique, and then the top three classifiers with the highest accuracy, Support Vector Machine, Random Forest, and Adaptive Boosting classification algorithms were selected to use the ensemble technique to improve performance.The accuracy achieved using a stacking classifier as an ensemble technique with cross-validation is 99.5%.The study provides an ensemble learning approach in which the top three best-performing classifiers in terms of cross-validation results are stacked in an ensemble model after balancing the dataset using SMOTE. This proposed technique could be applied to other diseases in the future, making disease detection less intrusive and cost-effective.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小蘑菇应助XM采纳,获得10
2秒前
安详的中心完成签到,获得积分10
2秒前
3秒前
4秒前
lc发布了新的文献求助10
5秒前
喵喵发布了新的文献求助10
6秒前
友好白凡发布了新的文献求助10
6秒前
huangbing123发布了新的文献求助10
6秒前
6秒前
9秒前
10秒前
呼噜噜发布了新的文献求助10
10秒前
英姑应助Kannan采纳,获得10
11秒前
乐乐应助大力水手采纳,获得10
11秒前
大模型应助lc采纳,获得10
11秒前
我是老大应助自由念之采纳,获得10
14秒前
14秒前
李富贵完成签到,获得积分20
15秒前
15秒前
16秒前
李富贵发布了新的文献求助10
18秒前
18秒前
18秒前
段dwh发布了新的文献求助10
18秒前
呼噜噜完成签到,获得积分10
18秒前
20秒前
费城青年发布了新的文献求助10
21秒前
慕青应助刻苦的芝采纳,获得10
21秒前
21秒前
wanci应助LIN采纳,获得10
22秒前
大力水手发布了新的文献求助10
24秒前
我不吃胡萝卜完成签到,获得积分10
25秒前
哭唧唧发布了新的文献求助10
25秒前
CAOHOU应助infinite采纳,获得20
26秒前
Kris发布了新的文献求助10
26秒前
liyan完成签到 ,获得积分10
27秒前
赘婿应助money采纳,获得10
28秒前
Sssssss完成签到 ,获得积分10
28秒前
领导范儿应助石榴汁的书采纳,获得10
31秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Research on WLAN scenario optimisation policy based on IoT smart campus 500
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3906027
求助须知:如何正确求助?哪些是违规求助? 3451606
关于积分的说明 10865426
捐赠科研通 3176966
什么是DOI,文献DOI怎么找? 1755185
邀请新用户注册赠送积分活动 848686
科研通“疑难数据库(出版商)”最低求助积分说明 791203