亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Efficient Ensemble-based Machine Learning approach for Predicting Chronic Kidney Disease

机器学习 人工智能 随机森林 集成学习 计算机科学 Boosting(机器学习) 支持向量机 分类器(UML) 阿达布思 交叉验证 肾脏疾病 集合预报 医学 内科学
作者
Divyanshi Chhabra,Mamta Juneja,Gautam Chutani
出处
期刊:Current Medical Imaging Reviews [Bentham Science]
卷期号:20 被引量:5
标识
DOI:10.2174/1573405620666230508104538
摘要

Chronic kidney disease (CKD) is a long-term risk to one's health that can result in kidney failure. CKD is one of today's most serious diseases, and early detection can aid in proper treatment. Machine learning techniques have proven to be reliable in the early medical diagnosis.The paper aims to perform CKD prediction using machine learning classification approaches. The dataset used for the present study for detecting CKD was obtained from the machine learning repository at the University of California, Irvine (UCI).In this study, twelve machine learning-based classification algorithms with full features were used. Since the CKD dataset had a class imbalance issue, the Synthetic Minority Over-Sampling technique (SMOTE) was used to alleviate the problem of class imbalance and review the performance based on machine learning classification models using the K fold cross-validation technique. The proposed work compares the results of twelve classifiers with and without the SMOTE technique, and then the top three classifiers with the highest accuracy, Support Vector Machine, Random Forest, and Adaptive Boosting classification algorithms were selected to use the ensemble technique to improve performance.The accuracy achieved using a stacking classifier as an ensemble technique with cross-validation is 99.5%.The study provides an ensemble learning approach in which the top three best-performing classifiers in terms of cross-validation results are stacked in an ensemble model after balancing the dataset using SMOTE. This proposed technique could be applied to other diseases in the future, making disease detection less intrusive and cost-effective.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
2秒前
sg123_发布了新的文献求助20
3秒前
zzzgggnnnbbb发布了新的文献求助10
6秒前
13秒前
小二郎应助鸭鸭采纳,获得10
13秒前
少川完成签到 ,获得积分10
18秒前
39秒前
青柠发布了新的文献求助10
42秒前
熊奎懿发布了新的文献求助80
43秒前
赘婿应助Ancoes采纳,获得10
53秒前
科研通AI6应助180090094745采纳,获得10
54秒前
57秒前
熊奎懿发布了新的文献求助10
1分钟前
1分钟前
1分钟前
青柠发布了新的文献求助10
1分钟前
1分钟前
CipherSage应助畅小畅采纳,获得10
1分钟前
1分钟前
科研通AI2S应助Michelle采纳,获得10
1分钟前
1分钟前
王盼完成签到 ,获得积分10
1分钟前
青柠发布了新的文献求助10
1分钟前
CipherSage应助科研通管家采纳,获得10
2分钟前
汉堡包应助科研通管家采纳,获得10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
Ancoes完成签到,获得积分10
2分钟前
Ancoes发布了新的文献求助10
2分钟前
2分钟前
2分钟前
guigui发布了新的文献求助10
2分钟前
2分钟前
Chenyol完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
雯小瑾发布了新的文献求助10
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5529000
求助须知:如何正确求助?哪些是违规求助? 4618288
关于积分的说明 14562360
捐赠科研通 4557224
什么是DOI,文献DOI怎么找? 2497425
邀请新用户注册赠送积分活动 1477664
关于科研通互助平台的介绍 1448975