Grouting reinforcement strategy for tunnel sand layer based on BP neural network

钢筋 人工神经网络 薄泥浆 反向传播 图层(电子) 岩土工程 信号(编程语言) 计算机科学 结构工程 工程类 人工智能 材料科学 复合材料 程序设计语言
作者
Qinglei Wang,Yongquan Zhu,Wenjiang Li,Pengbo Cui
出处
期刊:Applied mathematics and nonlinear sciences [De Gruyter]
卷期号:9 (1)
标识
DOI:10.2478/amns.2023.1.00186
摘要

Abstract Tunnel sand layer grouting reinforcement is a major difficulty in the current development of underground space. Finding a suitable method strategy for grouting reinforcement of the road sand layer to ensure the smooth implementation of the construction is imminent. In this paper, by building a BP neural network model, using signal forward propagation algorithm and error back propagation algorithm, back propagation of the error signal through the implied layer to the input layer, increased accuracy of calculations. To prove that BP neural network based on can effectively enhance the effect of tunnel grouting reinforcement, propose strategies for tunnel sand layer grouting reinforcement. Proven by simulation experiments: the effect of grouting reinforcement is influenced by the grouting material, grouting pressure, and the condition of the injected medium. The grouting parameters, grouting compressive strength and grouting age are the three major factors affecting the grouting reinforcement effect as deduced from the BP neural network input layer and implicit layer, a BP neural network model can be built to derive the parameters of these three major influencing factors. The calculation shows that, BP neural networks can provide specific data that can be relied upon for grout reinforcement, its effect prediction accuracy can reach 98%. It can be seen that BP neural network has practical application in tunnel sand layer grouting reinforcement strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Winna发布了新的文献求助10
刚刚
满意花卷完成签到 ,获得积分10
刚刚
时尚的冰棍儿完成签到 ,获得积分10
1秒前
犹豫勇完成签到,获得积分10
3秒前
wp048006完成签到,获得积分10
4秒前
专玩对抗路完成签到,获得积分10
4秒前
6秒前
卡卡西应助顾绍飞采纳,获得10
7秒前
7秒前
田様应助健壮的尔烟采纳,获得10
10秒前
10秒前
吉驴发布了新的文献求助80
10秒前
11秒前
12秒前
12秒前
15秒前
15秒前
八荒来犬发布了新的文献求助10
16秒前
taster发布了新的文献求助10
16秒前
科研通AI5应助顾绍飞采纳,获得10
17秒前
19秒前
超chao发布了新的文献求助10
20秒前
20秒前
20秒前
20秒前
23秒前
26秒前
Dceer发布了新的文献求助10
26秒前
酷波er应助zz采纳,获得10
26秒前
速速接完成签到,获得积分10
28秒前
30秒前
三个哈卡完成签到,获得积分10
30秒前
Clover完成签到 ,获得积分10
30秒前
32秒前
JHJ完成签到,获得积分10
32秒前
华仔应助Nariy采纳,获得10
33秒前
34秒前
鱼鱼鱼发布了新的文献求助10
35秒前
XPX完成签到 ,获得积分10
35秒前
36秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799017
求助须知:如何正确求助?哪些是违规求助? 3344758
关于积分的说明 10321412
捐赠科研通 3061218
什么是DOI,文献DOI怎么找? 1680076
邀请新用户注册赠送积分活动 806899
科研通“疑难数据库(出版商)”最低求助积分说明 763445