AutoTurb: Using large language models for automatic algebraic turbulence model discovery

物理 湍流 统计物理学 代数数 机械 数学分析 数学
作者
Yu Zhang,Kefeng Zheng,Fei Liu,Qingfu Zhang,Zhenkun Wang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:37 (1)
标识
DOI:10.1063/5.0247759
摘要

Symbolic regression (SR) methods have been extensively investigated to explore explicit algebraic Reynolds stress models (EARSM) for turbulence closure of Reynolds-averaged Navier-Stokes (RANS) equations. The deduced EARSM can be readily implemented in existing computational fluid dynamic (CFD) codes and promotes the identification of physically interpretable turbulence models. Recently, large language models (LLMs) trained on large amounts of publicly available source code have drawn great attention for their abilities to automatically discover equations with more general free-text inputs and problem descriptions and provide wider possibilities with novel insights. This work proposes a novel framework, named “AutoTurb,” using LLMs to automatically discover algebraic expressions for correcting the linear Reynolds stress model. The direct Reynolds stress and the indirect RANS output (e.g., velocity field) are both involved in the training objective to guarantee data consistency and avoid numerical stiffness. An evolutionary search framework is used for global optimization, where constraints on functional complexity and simulation convergence are integrated into the objective to manage the extensive flexibility of LLMs. The proposed method is performed for separated flow over periodic hills. The generalizability of the discovered model is verified on a set of 2D turbulent separated flows with different Reynolds numbers and geometries. Results show that the corrected RANS enhances predictions of both Reynolds stress and mean velocity fields. Compared to models from other studies, our discovered model shows superior accuracy and generalization capability. The proposed approach provides a promising paradigm for using LLMs to improve turbulence modeling for a given class of flows.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ACMI发布了新的文献求助10
1秒前
坦率的惊蛰完成签到,获得积分10
2秒前
ccc完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
情怀应助訫藍采纳,获得20
4秒前
4秒前
HM发布了新的文献求助10
4秒前
hua完成签到 ,获得积分10
5秒前
Cat完成签到,获得积分0
6秒前
成就钧完成签到,获得积分10
6秒前
邹长飞发布了新的文献求助10
6秒前
韶邑发布了新的文献求助20
7秒前
renjian完成签到,获得积分10
7秒前
木杉发布了新的文献求助10
7秒前
kkkl完成签到,获得积分20
8秒前
tar发布了新的文献求助10
10秒前
浅池星完成签到,获得积分10
10秒前
11秒前
得一完成签到,获得积分10
13秒前
kkk完成签到,获得积分10
14秒前
852应助HM采纳,获得10
14秒前
ZYN完成签到,获得积分10
15秒前
17秒前
宁夕完成签到 ,获得积分10
17秒前
17秒前
所所应助llwxx采纳,获得10
17秒前
淡淡的白羊完成签到 ,获得积分10
17秒前
iliuyang完成签到,获得积分10
18秒前
pangpang发布了新的文献求助30
19秒前
木杉完成签到,获得积分10
19秒前
Z_Z完成签到,获得积分10
20秒前
科研栾发布了新的文献求助10
22秒前
lin完成签到,获得积分10
22秒前
loong发布了新的文献求助10
22秒前
刘金鑫完成签到,获得积分20
22秒前
缓慢思枫发布了新的文献求助10
24秒前
拼搏的飞薇完成签到,获得积分10
24秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
Structural Equation Modeling of Multiple Rater Data 700
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3881896
求助须知:如何正确求助?哪些是违规求助? 3424201
关于积分的说明 10738318
捐赠科研通 3149220
什么是DOI,文献DOI怎么找? 1737796
邀请新用户注册赠送积分活动 839001
科研通“疑难数据库(出版商)”最低求助积分说明 784208