已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

AnomalyGFM: Graph Foundation Model for Zero/Few-shot Anomaly Detection

基础(证据) 图形 零(语言学) 异常(物理) 异常检测 物理 计算机科学 数学 人工智能 离散数学 政治学 量子力学 哲学 法学 语言学
作者
Hezhe Qiao,Chaoxi Niu,Chen Ling,Guansong Pang
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2502.09254
摘要

Graph anomaly detection (GAD) aims to identify abnormal nodes that differ from the majority of the nodes in a graph, which has been attracting significant attention in recent years. Existing generalist graph models have achieved remarkable success in different graph tasks but struggle to generalize to the GAD task. This limitation arises from their difficulty in learning generalized knowledge for capturing the inherently infrequent, irregular and heterogeneous abnormality patterns in graphs from different domains. To address this challenge, we propose AnomalyGFM, a GAD-oriented graph foundation model that supports zero-shot inference and few-shot prompt tuning for GAD in diverse graph datasets. One key insight is that graph-agnostic representations for normal and abnormal classes are required to support effective zero/few-shot GAD across different graphs. Motivated by this, AnomalyGFM is pre-trained to align data-independent, learnable normal and abnormal class prototypes with node representation residuals (i.e., representation deviation of a node from its neighbors). The residual features essentially project the node information into a unified feature space where we can effectively measure the abnormality of nodes from different graphs in a consistent way. This provides a driving force for the learning of graph-agnostic, discriminative prototypes for the normal and abnormal classes, which can be used to enable zero-shot GAD on new graphs, including very large-scale graphs. If there are few-shot labeled normal nodes available in the new graphs, AnomalyGFM can further support prompt tuning to leverage these nodes for better adaptation. Comprehensive experiments on 11 widely-used GAD datasets with real anomalies, demonstrate that AnomalyGFM significantly outperforms state-of-the-art competing methods under both zero- and few-shot GAD settings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
林十三发布了新的文献求助10
3秒前
5秒前
眼睛大的怀曼完成签到,获得积分10
5秒前
风起枫落发布了新的文献求助10
5秒前
深情安青应助尽舜尧采纳,获得10
8秒前
9秒前
酷炫依凝完成签到,获得积分10
9秒前
忧心的笑南应助sunnyqqz采纳,获得30
9秒前
包容的雅青完成签到,获得积分10
11秒前
顾矜应助ymxlcfc采纳,获得10
11秒前
长江完成签到 ,获得积分10
13秒前
qiu发布了新的文献求助10
14秒前
幸运星辰完成签到 ,获得积分10
14秒前
田様应助激动的访文采纳,获得10
20秒前
阔达岂愈发布了新的文献求助10
20秒前
一路硕博关注了科研通微信公众号
21秒前
ming完成签到,获得积分10
22秒前
28秒前
小鸣完成签到 ,获得积分10
28秒前
30秒前
ccm应助顺利紫山采纳,获得10
31秒前
电容器关注了科研通微信公众号
32秒前
yaayi发布了新的文献求助10
32秒前
Akim应助不知采纳,获得10
32秒前
Da完成签到,获得积分10
34秒前
完美世界应助nanjiren采纳,获得10
34秒前
37秒前
程老板发布了新的文献求助10
37秒前
37秒前
41秒前
十斤菠菜发布了新的文献求助10
41秒前
41秒前
suzhenyue应助江南最长情采纳,获得10
42秒前
罗健发布了新的文献求助10
43秒前
zjkzh完成签到 ,获得积分10
43秒前
柏林寒冬应助高高初柔采纳,获得10
43秒前
积极从蕾应助cosy采纳,获得10
44秒前
45秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4161188
求助须知:如何正确求助?哪些是违规求助? 3696760
关于积分的说明 11673978
捐赠科研通 3388255
什么是DOI,文献DOI怎么找? 1857879
邀请新用户注册赠送积分活动 918807
科研通“疑难数据库(出版商)”最低求助积分说明 831691