Relation-Guided Versatile Regularization for Federated Semi-Supervised Learning

正规化(语言学) 计算机科学 人工智能 模式识别(心理学) 关系(数据库) 机器学习 数据挖掘
作者
Qiushi Yang,Zhen Chen,Zhe Peng,Yixuan Yuan
出处
期刊:International Journal of Computer Vision [Springer Nature]
标识
DOI:10.1007/s11263-024-02330-1
摘要

Abstract Federated semi-supervised learning (FSSL) target to address the increasing privacy concerns for the practical scenarios, where data holders are limited in labeling capability. Latest FSSL approaches leverage the prediction consistency between the local model and global model to exploit knowledge from partially labeled or completely unlabeled clients. However, they merely utilize data-level augmentation for prediction consistency and simply aggregate model parameters through the weighted average at the server, which leads to biased classifiers and suffers from skewed unlabeled clients. To remedy these issues, we present a novel FSSL framework, Relation-guided Versatile Regularization (FedRVR), consisting of versatile regularization at clients and relation-guided directional aggregation strategy at the server. In versatile regularization, we propose the model-guided regularization together with the data-guided one, and encourage the prediction of the local model invariant to two extreme global models with different abilities, which provides richer consistency supervision for local training. Moreover, we devise a relation-guided directional aggregation at the server, in which a parametric relation predictor is introduced to yield pairwise model relation and obtain a model ranking. In this manner, the server can provide a superior global model by aggregating relative dependable client models, and further produce an inferior global model via reverse aggregation to promote the versatile regularization at clients. Extensive experiments on three FSSL benchmarks verify the superiority of FedRVR over state-of-the-art counterparts across various federated learning settings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助惠惠采纳,获得10
2秒前
吉尔吉斯斯坦完成签到 ,获得积分10
2秒前
2秒前
英俊的铭应助Mrmiss666采纳,获得10
2秒前
One应助朱朱采纳,获得10
2秒前
英姑应助夕颜如玉采纳,获得10
3秒前
3秒前
sokach发布了新的文献求助10
3秒前
刘仁轨发布了新的文献求助10
4秒前
4秒前
完美世界应助归尘采纳,获得10
4秒前
4秒前
刁内谁完成签到 ,获得积分10
5秒前
神勇乐曲发布了新的文献求助10
5秒前
5秒前
5秒前
1chen完成签到 ,获得积分10
5秒前
碧蓝的若风完成签到,获得积分10
5秒前
6秒前
发论文完成签到 ,获得积分10
6秒前
ccc完成签到 ,获得积分10
6秒前
Wayne发布了新的文献求助10
6秒前
starlettt关注了科研通微信公众号
6秒前
6秒前
12444完成签到,获得积分10
7秒前
Hello应助碳烤小黑茶采纳,获得10
7秒前
REEEEA关注了科研通微信公众号
7秒前
武巧运发布了新的文献求助10
7秒前
彭shuai完成签到,获得积分10
7秒前
宁千凡完成签到,获得积分20
7秒前
领导范儿应助六六采纳,获得10
7秒前
2441070664发布了新的文献求助10
8秒前
8秒前
悦耳的闭月完成签到,获得积分10
8秒前
烂漫笑晴发布了新的文献求助10
8秒前
思源应助荔枝树13采纳,获得10
8秒前
科研底层韭菜应助归尘采纳,获得10
8秒前
乱糟糟发布了新的文献求助10
9秒前
Z_mzse完成签到,获得积分10
9秒前
ouyoha发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5506003
求助须知:如何正确求助?哪些是违规求助? 4601533
关于积分的说明 14477031
捐赠科研通 4535471
什么是DOI,文献DOI怎么找? 2485413
邀请新用户注册赠送积分活动 1468399
关于科研通互助平台的介绍 1440873