生物生产
大肠杆菌
生物
细胞色素P450
生物化学
计算生物学
合成生物学
细胞色素P450还原酶
细胞生物学
酶
基因
细胞色素b
线粒体DNA
作者
Yikui Li,Jie Li,Weikang Chen,Yang Li,Sheng Xu,Linwei Li,Bing Xia,Ren Wang
标识
DOI:10.1038/s41467-024-54259-1
摘要
Eukaryotic cytochrome P450 enzymes, generally colocalizing with their redox partner cytochrome P450 reductase (CPR) on the cytoplasmic surface of organelle membranes, often perform poorly in prokaryotic cells, whether expressed with CPR as a tandem chimera or free-floating individuals, causing a low titer of heterologous chemicals. To improve their biosynthetic performance in Escherichia coli, here, we architecturally design self-assembled alternatives of eukaryotic P450 system using reconstructed P450 and CPR, and create a set of N-termini-bridged P450-CPR heterodimers as the counterparts of eukaryotic P450 system with N-terminus-guided colocalization. The covalent counterparts show superior and robust biosynthetic performance, and the N-termini-bridged architecture is validated to improve the biosynthetic performance of both plant and human P450 systems. Furthermore, the architectural configuration of protein assemblies has an inherent effect on the biosynthetic performance of N-termini-bridged P450-CPR heterodimers. The results suggest that spatial architecture-guided protein assembly could serve as an efficient strategy for improving the biosynthetic performance of protein complexes, particularly those related to eukaryotic membranes, in prokaryotic and even eukaryotic hosts. Cytochrome P450 enzymes (P450s) and their redox partner cytochrome P450 reductase (CPR) often perform poorly in bioproduction of natural products by engineered prokaryotic microbes. Here, the authors report spatial architecture-guided P450-CPR assembly for improving the biosynthetic performance of both plant and human P450s in E. coli.
科研通智能强力驱动
Strongly Powered by AbleSci AI