Development and multicenter validation of machine learning models for predicting postoperative pulmonary complications after neurosurgery

随机森林 接收机工作特性 逻辑回归 Lasso(编程语言) 医学 人工智能 机器学习 交叉验证 特征选择 置信区间 神经外科 特征(语言学) 预测建模 数据挖掘 计算机科学 外科 内科学 语言学 哲学 万维网
作者
Ming Xu,Wenhao Zhu,Siyu Hou,Hongzhi Xu,Jingwen Xia,Liyu Lin,浩平 川副,Mingyu You,Jiafeng Wang,Zhi Xie,Xiao-Hong Wen,Ying‐Wei Wang
出处
期刊:Chinese Medical Journal [Lippincott Williams & Wilkins]
标识
DOI:10.1097/cm9.0000000000003433
摘要

Abstract Background: Postoperative pulmonary complications (PPCs) are major adverse events in neurosurgical patients. This study aimed to develop and validate machine learning models predicting PPCs after neurosurgery. Methods: PPCs were defined according to the European Perioperative Clinical Outcome standards as occurring within 7 postoperative days. Data of cases meeting inclusion/exclusion criteria were extracted from the anesthesia information management system to create three datasets: The development (data of Huashan Hospital, Fudan University from 2018 to 2020), temporal validation (data of Huashan Hospital, Fudan University in 2021) and external validation (data of other three hospitals in 2023) datasets. Machine learning models of six algorithms were trained using either 35 retrievable and plausible features or the 11 features selected by Lasso regression. Temporal validation was conducted for all models and the 11-feature models were also externally validated. Independent risk factors were identified and feature importance in top models was analyzed. Results: PPCs occurred in 712 of 7533 (9.5%), 258 of 2824 (9.1%), and 207 of 2300 (9.0%) patients in the development, temporal validation and external validation datasets, respectively. During cross-validation training, all models except Bayes demonstrated good discrimination with an area under the receiver operating characteristic curve (AUC) of 0.84. In temporal validation of full-feature models, deep neural network (DNN) performed the best with an AUC of 0.835 (95% confidence interval [CI]: 0.805–0.858) and a Brier score of 0.069, followed by logistic regression (LR), random forest and XGBoost. The 11-feature models performed comparable to full-feature models with very close but statistically lower AUCs, with the top models of DNN and LR in temporal and external validations. An 11-feature nomogram was drawn based on the LR algorithm and it outperformed the minimally modified Assess respiratory RIsk in Surgical patients in CATalonia (ARISCAT) and Laparoscopic Surgery Video Educational Guidelines (LAS VEGAS) scores with a higher AUC (LR: 0.824, ARISCAT: 0.672, LAS: 0.663). Independent risk factors based on multivariate LR mostly overlapped with Lasso-selected features, but lacked consistency with the important features using the Shapley additive explanation (SHAP) method of the LR model. Conclusions: The developed models, especially the DNN model and the nomogram, had good discrimination and calibration, and could be used for predicting PPCs in neurosurgical patients. The establishment of machine learning models and the ascertainment of risk factors might assist clinical decision support for improving surgical outcomes. Trial registration: ChiCTR 2100047474; https://www.chictr.org.cn/showproj.html?proj = 128279.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
下路润发布了新的文献求助10
刚刚
希望天下0贩的0应助WTJ采纳,获得10
1秒前
xdmhv完成签到 ,获得积分10
1秒前
赘婿应助save采纳,获得10
2秒前
2秒前
3秒前
橙子是不是完成签到,获得积分10
3秒前
houfei发布了新的文献求助20
5秒前
6秒前
atmorz发布了新的文献求助10
6秒前
RoyChen发布了新的文献求助10
6秒前
神马都不懂完成签到,获得积分10
7秒前
8秒前
大胆的小懒猪完成签到 ,获得积分10
8秒前
文静2020完成签到,获得积分10
8秒前
8秒前
鑫叶完成签到,获得积分10
9秒前
忧心的惜天完成签到 ,获得积分10
9秒前
Dora完成签到,获得积分10
9秒前
喜静完成签到,获得积分10
9秒前
Ori发布了新的文献求助10
10秒前
研友_VZG7GZ应助一包辣条采纳,获得10
10秒前
爱笑的觅双完成签到,获得积分10
11秒前
zyyyyyyyyyyy完成签到,获得积分10
12秒前
漫漫发布了新的文献求助10
12秒前
陈子皮boy发布了新的文献求助50
12秒前
chever给光亮的依琴的求助进行了留言
12秒前
陶醉的绮菱完成签到,获得积分10
13秒前
Emma发布了新的文献求助10
13秒前
13秒前
14秒前
金金金金完成签到,获得积分10
15秒前
科研小废物完成签到,获得积分10
15秒前
16秒前
自然的依风完成签到 ,获得积分20
16秒前
冷静的胜完成签到,获得积分10
16秒前
正直无极完成签到,获得积分10
16秒前
16秒前
隐形曼青应助haralee采纳,获得10
18秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816738
求助须知:如何正确求助?哪些是违规求助? 3360137
关于积分的说明 10406832
捐赠科研通 3078164
什么是DOI,文献DOI怎么找? 1690598
邀请新用户注册赠送积分活动 813910
科研通“疑难数据库(出版商)”最低求助积分说明 767889