Single-View Fluoroscopic X-Ray Pose Estimation: A Comparison of Alternative Loss Functions and Volumetric Scene Representations

姿势 人工智能 计算机科学 计算机视觉 基本事实 三维姿态估计 计算 梯度下降 投影(关系代数) 人工神经网络 算法
作者
Chaochao Zhou,Syed Hasib Akhter Faruqui,Dayeong An,Abhinav Patel,R Abdalla,Michael C. Hurley,Ali Shaibani,Matthew B. Potts,Babak S. Jahromi,Sameer A. Ansari,Donald R. Cantrell
标识
DOI:10.1007/s10278-024-01354-w
摘要

Many tasks performed in image-guided procedures can be cast as pose estimation problems, where specific projections are chosen to reach a target in 3D space. In this study, we construct a framework for fluoroscopic pose estimation and compare alternative loss functions and volumetric scene representations. We first develop a differentiable projection (DiffProj) algorithm for the efficient computation of Digitally Reconstructed Radiographs (DRRs) from either Cone-Beam Computerized Tomography (CBCT) or neural scene representations. We introduce two innovative neural scene representations, Neural Tuned Tomography (NeTT) and masked Neural Radiance Fields (mNeRF). Pose estimation is then performed within the framework by iterative gradient descent using loss functions that quantify the image discrepancy of the synthesized DRR with respect to the ground-truth, target fluoroscopic X-ray image. We compared alternative loss functions and volumetric scene representations for pose estimation using a dataset consisting of 50 cranial tomographic X-ray sequences. We find that Mutual Information significantly outperforms alternative loss functions for pose estimation, avoiding entrapment in local optima. The alternative discrete (CBCT) and neural (NeTT and mNeRF) volumetric scene representations yield comparable performance (3D angle errors, mean ≤ 3.2° and 90% quantile ≤ 3.4°); however, the neural scene representations incur a considerable computational expense to train.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
传奇3应助nenoaowu采纳,获得10
1秒前
桐桐应助chenhailang采纳,获得10
1秒前
1秒前
3秒前
QJH发布了新的文献求助10
3秒前
4秒前
5秒前
万能图书馆应助斯文可仁采纳,获得10
6秒前
1013完成签到 ,获得积分10
7秒前
充电宝应助木cheng采纳,获得10
8秒前
9秒前
黑糖完成签到,获得积分10
9秒前
今天吃什么呢完成签到,获得积分10
10秒前
闫霄溯完成签到,获得积分20
11秒前
淡然善斓完成签到,获得积分10
11秒前
aoeiuv发布了新的文献求助10
12秒前
Earnestlee完成签到,获得积分10
12秒前
12秒前
13秒前
量子星尘发布了新的文献求助50
16秒前
16秒前
浮游应助lmc采纳,获得10
16秒前
liian7完成签到,获得积分10
17秒前
18秒前
复杂颦发布了新的文献求助10
19秒前
CodeCraft应助科研通管家采纳,获得10
20秒前
脑洞疼应助科研通管家采纳,获得20
20秒前
20秒前
小二郎应助科研通管家采纳,获得10
20秒前
浮游应助科研通管家采纳,获得10
20秒前
20秒前
所所应助科研通管家采纳,获得10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
上官若男应助科研通管家采纳,获得10
20秒前
优雅莞应助科研通管家采纳,获得20
21秒前
21秒前
21秒前
21秒前
Lucemon完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950667
求助须知:如何正确求助?哪些是违规求助? 4213453
关于积分的说明 13104082
捐赠科研通 3995307
什么是DOI,文献DOI怎么找? 2186837
邀请新用户注册赠送积分活动 1202080
关于科研通互助平台的介绍 1115359