Prediction of coal structures and its gas-bearing properties based on geophysical logging parameters: A case study in Anze block, China

物理 块(置换群论) 地球物理学 地震学 地质学 几何学 数学 工程类 废物管理
作者
Kun Zhang,Ming Li,Zhaoping Meng
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (12) 被引量:3
标识
DOI:10.1063/5.0241275
摘要

Coal structures are widely regarded as a critical influencing factor for the dynamic behaviors of CH4 migration in coalbed methane (CBM) reservoir. In this paper, geophysical logging data were analyzed to explore the logging response characteristics of coal structures, and their application on identification of coal structures by using the machine learning methods. Meanwhile, the correlations between coal structures and gas-bearing properties were revealed. The results show that with the increase in coal deformation intensities, acoustic transit time, caliper logging, compensated neutron, and natural gamma values positively increase and that for density logging and lateral resistivity show a negative correlation. The multi-logging parameter identification models of coal structures were constructed by using random forest algorithm, radial basis function neural network, and long short-term memory neural network, with their accuracy reaching to 96.67%, 93.33%, and 91.67%, respectively. Based on the identification results of RFA model, the highest distribution percentages of cataclastic coal are 50.2%, which is controlled by tectonic activities and buried depth. The origins of gases are mainly thermogenic gases whose average value of δ13C(CH4) is −37.51‰. The gas content in granulated coal is smaller than 12 cm3/g, but it is higher than 15 cm3/g in cataclastic coal, resulting the higher gas saturation of cataclastic coal. The average extension length of artificial fractures in cataclastic coals is nearly two times as long as in granulated coals. It is suggested that cataclastic coal zone is the favorable area for CBM development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助哈哈哈采纳,获得10
1秒前
陶然共忘机完成签到 ,获得积分10
1秒前
MRCHONG发布了新的文献求助10
2秒前
2秒前
微凉发布了新的文献求助10
3秒前
甜菜完成签到,获得积分10
3秒前
JamesPei应助眼睛大乐珍采纳,获得10
4秒前
5秒前
Owen应助liupidanqiu采纳,获得10
5秒前
PhDL1发布了新的文献求助10
7秒前
7秒前
科研通AI5应助xzzt采纳,获得10
8秒前
8秒前
穆伟祺应助洛洛采纳,获得10
8秒前
平常山柏完成签到,获得积分10
8秒前
wanci应助song采纳,获得10
9秒前
自由的渗透奈鱼完成签到,获得积分10
9秒前
FashionBoy应助耶啵8825采纳,获得10
9秒前
10秒前
10秒前
11秒前
Han发布了新的文献求助10
11秒前
12秒前
12秒前
纯真的雨完成签到 ,获得积分10
12秒前
英俊的铭应助汤浩宏采纳,获得10
13秒前
13秒前
14秒前
16秒前
16秒前
16秒前
17秒前
liupidanqiu发布了新的文献求助10
17秒前
Steve发布了新的文献求助10
18秒前
咩咩发布了新的文献求助10
18秒前
完美世界应助Demon采纳,获得10
18秒前
烟花应助可口可乐采纳,获得10
20秒前
复杂若男发布了新的文献求助10
20秒前
21秒前
冷傲迎梅关注了科研通微信公众号
21秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
La RSE en pratique 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4424446
求助须知:如何正确求助?哪些是违规求助? 3903101
关于积分的说明 12134097
捐赠科研通 3549159
什么是DOI,文献DOI怎么找? 1947626
邀请新用户注册赠送积分活动 987769
科研通“疑难数据库(出版商)”最低求助积分说明 883561