A semi-supervised weighted SPCA- and convolution KAN-based model for drug response prediction

卷积(计算机科学) 计算机科学 药物反应 统计 人工智能 药品 数学 药理学 生物 人工神经网络
作者
Rui Miao,Bing-Jie Zhong,Xin-Yue Mei,Xin Dong,Yang-Dong Ou,Yong Liang,Haoyang Yu,Ying Wang,Zihan Dong
出处
期刊:Frontiers in Genetics [Frontiers Media]
卷期号:16
标识
DOI:10.3389/fgene.2025.1532651
摘要

Motivation Predicting the response of cell lines to characteristic drugs based on multi-omics gene information has become the core problem of precision oncology. At present, drug response prediction using multi-omics gene data faces the following three main challenges: first, how to design a gene probe feature extraction model with biological interpretation and high performance; second, how to develop multi-omics weighting modules for reasonably fusing genetic data of different lengths and noise conditions; third, how to construct deep learning models that can handle small sample sizes while minimizing the risk of possible overfitting. Results We propose an innovative drug response prediction model (NMDP). First, the NMDP model introduces an interpretable semi-supervised weighted SPCA module to solve the feature extraction problem in multi-omics gene data. Next, we construct a multi-omics data fusion framework based on sample similarity networks, bimodal tests, and variance information, which solves the data fusion problem and enables the NMDP model to focus on more relevant genomic data. Finally, we combine a one-dimensional convolution method and Kolmogorov–Arnold networks (KANs) to predict the drug response. We conduct five sets of real data experiments and compare NMDP against seven advanced drug response prediction methods. The results show that NMDP achieves the best performance, with sensitivity and specificity reaching 0.92 and 0.93, respectively—an improvement of 11%–57% compared to other models. Bio-enrichment experiments strongly support the biological interpretation of the NMDP model and its ability to identify potential targets for drug activity prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Rw发布了新的文献求助10
1秒前
3秒前
5秒前
mama发布了新的文献求助30
5秒前
李铛铛发布了新的文献求助10
8秒前
潘果果完成签到,获得积分10
8秒前
karcorl发布了新的文献求助10
9秒前
文献看不懂应助zone采纳,获得10
9秒前
10秒前
Rw完成签到,获得积分20
11秒前
13秒前
13秒前
小蘑菇应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
orixero应助科研通管家采纳,获得10
14秒前
思源应助科研通管家采纳,获得30
14秒前
赘婿应助科研通管家采纳,获得30
14秒前
隐形曼青应助科研通管家采纳,获得10
14秒前
香蕉觅云应助科研通管家采纳,获得10
14秒前
英俊的铭应助科研通管家采纳,获得30
15秒前
Jasper应助科研通管家采纳,获得10
15秒前
大模型应助科研通管家采纳,获得10
15秒前
852应助科研通管家采纳,获得10
15秒前
顾矜应助科研通管家采纳,获得10
15秒前
pluto应助科研通管家采纳,获得10
15秒前
852应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
英俊的铭应助科研通管家采纳,获得30
15秒前
JamesPei应助科研通管家采纳,获得10
15秒前
慕青应助科研通管家采纳,获得10
15秒前
SciGPT应助科研通管家采纳,获得50
15秒前
大个应助科研通管家采纳,获得80
15秒前
研友_VZG7GZ应助科研通管家采纳,获得30
16秒前
bkagyin应助科研通管家采纳,获得10
16秒前
wanci应助科研通管家采纳,获得10
16秒前
ding应助科研通管家采纳,获得10
16秒前
16秒前
wanci应助科研通管家采纳,获得10
16秒前
16秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776802
求助须知:如何正确求助?哪些是违规求助? 3322227
关于积分的说明 10209363
捐赠科研通 3037491
什么是DOI,文献DOI怎么找? 1666749
邀请新用户注册赠送积分活动 797627
科研通“疑难数据库(出版商)”最低求助积分说明 757976