Machine-learning-based pressure reconstruction with moving boundaries

计算机科学 机械 物理
作者
Hongping Wang,Fan Wu,Yi Liu,Xinyi He,Shuyi Feng,Shizhao Wang
出处
期刊:Journal of Fluid Mechanics [Cambridge University Press]
卷期号:1008
标识
DOI:10.1017/jfm.2025.91
摘要

The greatest challenge in pressure reconstruction from the measured velocity fields is that the error of material acceleration is significantly contaminated due to error propagation. Particularly for flows with moving boundaries, accurate boundary velocities are difficult to obtain due to error propagation, and a complex boundary processing technique is needed to treat the moving boundaries. The present work proposes a machine-learning-based method to determine the pressure for incompressible flows with moving boundaries. The proposed network consists of two neural networks: one network, named the boundary network, is used to track the Lagrangian boundary points; the other physics-informed neural network, named the flow network, is adopted to approximate the flow fields. These two networks are coupled by imposing boundary conditions. We further propose a new dynamic weight strategy for the loss terms to guarantee convergence and stability. The performance of the proposed method is validated by two examples: the flow over an oscillating cylinder and the flow around a swimming fish. The proposed method can accurately determine the pressure fields and boundary motion from synthetic particle image velocimetry (PIV) flow fields. Moreover, this method can also predict the boundary and pressure at a given instant without supervised data. Finally, this method was applied to reconstruct the pressure from the two-dimensional and three-dimensional PIV velocities of the left ventricle. All of the results indicate that the proposed method can accurately reconstruct the pressure fields for flows with moving boundaries and is a novel method for surface pressure estimation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
YingyingFan发布了新的文献求助10
1秒前
3秒前
小小狗完成签到,获得积分10
3秒前
谈笑间应助杨明凤采纳,获得10
3秒前
Jovid完成签到,获得积分10
4秒前
HEAUBOOK应助柔弱友菱采纳,获得10
4秒前
tt11111发布了新的文献求助10
5秒前
谈笑间应助香酥板栗采纳,获得10
5秒前
lmy发布了新的文献求助10
7秒前
既白完成签到 ,获得积分10
7秒前
8秒前
科研通AI5应助JF123_采纳,获得10
8秒前
8秒前
跳跃虔完成签到,获得积分20
8秒前
脑洞疼应助诸葛藏藏采纳,获得10
9秒前
cassie发布了新的文献求助10
9秒前
9秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
小二郎应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
烟花应助科研通管家采纳,获得10
11秒前
WWW应助科研通管家采纳,获得10
11秒前
Rage_Wang应助科研通管家采纳,获得20
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
所所应助科研通管家采纳,获得10
11秒前
星辰大海应助科研通管家采纳,获得10
11秒前
12秒前
共享精神应助科研通管家采纳,获得10
12秒前
共享精神应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
小二郎应助科研通管家采纳,获得10
12秒前
华仔应助科研通管家采纳,获得10
12秒前
打打应助科研通管家采纳,获得10
12秒前
77应助科研通管家采纳,获得20
12秒前
12秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799816
求助须知:如何正确求助?哪些是违规求助? 3345094
关于积分的说明 10323610
捐赠科研通 3061657
什么是DOI,文献DOI怎么找? 1680474
邀请新用户注册赠送积分活动 807093
科研通“疑难数据库(出版商)”最低求助积分说明 763462