Normalized-Full-Palmar-Hand: Towards More Accurate Hand-Based Multimodal Biometrics

生物识别 计算机科学 人工智能 计算机视觉 语音识别 模式识别(心理学)
作者
Yitao Qiao,Wenxiong Kang,Dacan Luo,Junduan Huang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-17
标识
DOI:10.1109/tpami.2025.3564514
摘要

Hand-based multimodal biometrics have attracted significant attention due to their high security and performance. However, existing methods fail to adequately decouple various hand biometric traits, limiting the extraction of unique features. Moreover, effective feature extraction for multiple hand traits remains a challenge. To address these issues, we propose a novel method for the precise decoupling of hand multimodal features called 'Normalized-Full-Palmar-Hand' and construct an authentication system based on this method. First, we propose HSANet, which accurately segments various hand regions with diverse backgrounds based on low-level details and high-level semantic information. Next, we establish two hand multimodal biometric databases with HSANet: SCUT Normalized-Full-Palmar-Hand Database Version 1 (SCUT_NFPH_v1) and Version 2 (SCUT_NFPH_v2). These databases include full hand images, semantic masks, and images of various hand biometric traits obtained from the same individual at the same scale, totaling 157,500 images. Third, we propose the Full Palmar Hand Authentication Network framework (FPHandNet) to extract unique features of multiple hand biometric traits. Finally, extensive experimental results, performed via the publicly available CASIA, IITD, COEP databases, and our proposed databases, validate the effectiveness of our methods. The SCUT_NFPH_v1 and SCUT_NFPH_v2 databases are available at https://github.com/SCUT-BIP-Lab/NFPH.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助oceanao采纳,获得10
4秒前
4秒前
5秒前
6秒前
英俊的铭应助LY采纳,获得10
8秒前
8秒前
周舟发布了新的文献求助10
9秒前
9秒前
10秒前
SYLH应助俭朴的如容采纳,获得10
10秒前
Qiuju完成签到,获得积分10
10秒前
haha完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
溪泉发布了新的文献求助10
13秒前
hanyingwang完成签到,获得积分10
13秒前
14秒前
linzhuo完成签到,获得积分10
15秒前
JamesPei应助周舟采纳,获得30
15秒前
周周发布了新的文献求助30
16秒前
16秒前
16秒前
18秒前
linzhuo发布了新的文献求助10
18秒前
21秒前
量子星尘发布了新的文献求助10
22秒前
22秒前
王不留行发布了新的文献求助10
22秒前
红红发布了新的文献求助10
23秒前
24秒前
TOM发布了新的文献求助10
25秒前
骆欣怡完成签到 ,获得积分10
25秒前
27秒前
28秒前
28秒前
奥斯卡完成签到,获得积分0
28秒前
慕青应助yehata采纳,获得10
31秒前
32秒前
情怀应助溪泉采纳,获得10
32秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
城市流域产汇流机理及其驱动要素研究—以北京市为例 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3860908
求助须知:如何正确求助?哪些是违规求助? 3403174
关于积分的说明 10633905
捐赠科研通 3126307
什么是DOI,文献DOI怎么找? 1723947
邀请新用户注册赠送积分活动 830263
科研通“疑难数据库(出版商)”最低求助积分说明 779001