A Semantic Change Detection Network Based on Boundary Detection and Task Interaction for High-Resolution Remote Sensing Images

变更检测 计算机科学 任务(项目管理) 遥感 边界(拓扑) 人工智能 分辨率(逻辑) 高分辨率 计算机视觉 地质学 系统工程 工程类 数学 数学分析
作者
Yingjie Tang,Shou Feng,Chunhui Zhao,Yongqi Chen,Zhiyong Lv,Weiwei Sun
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (9): 17184-17198 被引量:8
标识
DOI:10.1109/tnnls.2025.3570425
摘要

Semantic change detection (CD) not only helps pinpoint the locations where changes occur, but also identifies the specific types of changes in land cover and land use. Currently, the mainstream approach for semantic CD (SCD) decomposes the task into semantic segmentation (SS) and CD tasks. Although these methods have achieved good results, they do not consider the incentive effect of task correlation on the entire model. Given this issue, this article further elucidates the SCD task through the lens of multitask learning theory and proposes a semantic change detection network based on boundary detection and task interaction (BT-SCD). In BT-SCD, the boundary detection (BD) task is introduced to enhance the correlation between the SS task and the CD task in SCD, thereby promoting positive reinforcement between SS and CD tasks. Furthermore, to enhance the communication of information between the SS and CD tasks, the pixel-level interaction strategy and the logit-level interaction strategy are proposed. Finally, to fully capture the temporal change information of the bitemporal features and eliminate their temporal dependency, a bidirectional change feature extraction module is proposed. Extensive experimental results on three commonly used datasets and a nonagriculturalization dataset (NAFZ) show that our BT-SCD achieves state-of-the-art performance. The code is available at https://github.com/TangYJ1229/BT-SCD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助科研通管家采纳,获得10
刚刚
情怀应助科研通管家采纳,获得10
刚刚
研友_VZG7GZ应助伶俐一曲采纳,获得10
刚刚
刚刚
刚刚
量子星尘发布了新的文献求助10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
华仔应助默默采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得30
1秒前
英俊的铭应助科研通管家采纳,获得30
1秒前
1秒前
1秒前
赘婿应助阔达冷荷采纳,获得10
1秒前
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
酷酷迎彤完成签到 ,获得积分10
1秒前
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
结实星星应助科研通管家采纳,获得10
1秒前
1秒前
结实星星应助科研通管家采纳,获得10
1秒前
1秒前
情怀应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
所所应助YCLING采纳,获得10
2秒前
司马绮山发布了新的文献求助10
2秒前
www完成签到,获得积分10
2秒前
3秒前
复杂的含蕾完成签到 ,获得积分10
3秒前
3秒前
Orange应助西安油泼面采纳,获得30
3秒前
lizhongguo完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784462
求助须知:如何正确求助?哪些是违规求助? 5682526
关于积分的说明 15464250
捐赠科研通 4913580
什么是DOI,文献DOI怎么找? 2644772
邀请新用户注册赠送积分活动 1592662
关于科研通互助平台的介绍 1547148