A Semantic Change Detection Network Based on Boundary Detection and Task Interaction for High-Resolution Remote Sensing Images

变更检测 计算机科学 任务(项目管理) 遥感 边界(拓扑) 人工智能 分辨率(逻辑) 高分辨率 计算机视觉 地质学 系统工程 工程类 数学 数学分析
作者
Yingjie Tang,Shou Feng,Chunhui Zhao,Yongqi Chen,Zhiyong Lv,Weiwei Sun
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2025.3570425
摘要

Semantic change detection (CD) not only helps pinpoint the locations where changes occur, but also identifies the specific types of changes in land cover and land use. Currently, the mainstream approach for semantic CD (SCD) decomposes the task into semantic segmentation (SS) and CD tasks. Although these methods have achieved good results, they do not consider the incentive effect of task correlation on the entire model. Given this issue, this article further elucidates the SCD task through the lens of multitask learning theory and proposes a semantic change detection network based on boundary detection and task interaction (BT-SCD). In BT-SCD, the boundary detection (BD) task is introduced to enhance the correlation between the SS task and the CD task in SCD, thereby promoting positive reinforcement between SS and CD tasks. Furthermore, to enhance the communication of information between the SS and CD tasks, the pixel-level interaction strategy and the logit-level interaction strategy are proposed. Finally, to fully capture the temporal change information of the bitemporal features and eliminate their temporal dependency, a bidirectional change feature extraction module is proposed. Extensive experimental results on three commonly used datasets and a nonagriculturalization dataset (NAFZ) show that our BT-SCD achieves state-of-the-art performance. The code is available at https://github.com/TangYJ1229/BT-SCD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈美宏发布了新的文献求助10
1秒前
stinkyfish完成签到,获得积分10
1秒前
moonveil完成签到,获得积分10
2秒前
2秒前
热吻街头发布了新的文献求助10
3秒前
5秒前
moonveil发布了新的文献求助10
5秒前
余额发布了新的文献求助10
6秒前
vdvdvsd完成签到,获得积分10
7秒前
8秒前
miaomiao完成签到,获得积分10
8秒前
9秒前
朱孟研发布了新的文献求助10
11秒前
12秒前
勤恳的夏之完成签到,获得积分10
13秒前
科目三应助wuaipei采纳,获得10
13秒前
SYLH应助Soir采纳,获得30
13秒前
dandan完成签到 ,获得积分10
14秒前
Zhang完成签到 ,获得积分10
15秒前
16秒前
花小生完成签到 ,获得积分10
17秒前
paperstofind完成签到,获得积分10
18秒前
CC发布了新的文献求助20
19秒前
21秒前
科研通AI2S应助善良的剑通采纳,获得10
22秒前
JamesPei应助风趣的灵枫采纳,获得10
22秒前
tjpu发布了新的文献求助10
23秒前
24秒前
kk应助沈访枫采纳,获得30
25秒前
能干的吐司完成签到,获得积分10
26秒前
tangcl完成签到,获得积分10
26秒前
小斌仔发布了新的文献求助10
29秒前
一只羊发布了新的文献求助10
29秒前
思源应助tjpu采纳,获得10
31秒前
李健的小迷弟应助tangcl采纳,获得10
33秒前
33秒前
34秒前
35秒前
Libgenxxxx完成签到,获得积分10
36秒前
37秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Diagnostic Imaging: Pediatric Neuroradiology 2000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 720
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Media as Procedures of Communication 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4134714
求助须知:如何正确求助?哪些是违规求助? 3671425
关于积分的说明 11608751
捐赠科研通 3367509
什么是DOI,文献DOI怎么找? 1849978
邀请新用户注册赠送积分活动 913493
科研通“疑难数据库(出版商)”最低求助积分说明 828692