Enhancing ECG Classification in Cardiac Diagnostics: A Novel Approach Using Adaptive Focal Cross-Entropy Loss Function

计算机科学 交叉熵 熵(时间箭头) 人工智能 模式识别(心理学) 物理 量子力学
作者
Happy Nkanta Monday,Grace Ugochi Nneji,Md Altab Hossin,Kevin Mark,Edwin Sunday Umana,Goodness Temofe Mgbejime,Jianping Li
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-17
标识
DOI:10.1109/jbhi.2025.3566531
摘要

Heart disease is the leading cause of mortality globally. Electrocardiograms (ECGs) are standard instruments for the examination of heart conditions, but traditional analysis is time-consuming and prone to errors. Novel advances in artificial intelligence have improved ECG classification. However, some limitations remain, such as poor interpretability, computational cost, and class imbalance. This study proposes a novel deep learning algorithm based on Depthwise Separable Residual Attention called DRA-ECG and a customized Adaptive Focal Cross- Entropy (AFCE) loss function for cardiac condition classification. This proposed methodology leverages the Continuous Wavelet Transform (CWT) method to transform 1D raw ECG signals into 2D scalograms to enhance feature representation and training. The proposed customized AFCE loss function incorporated into the DRA-ECG model addresses the class imbalance problem and boost the performance of the model. More so, this study incorporates edge feature detection as a preprocessing technique to denoise and enhance the trainable features of the 2D scalograms for optimal feature representation. The proposed DRA-ECG model achieves a high accuracy of 98.17%, recall of 95.78%, F1-score of 95.82%, and precision of 95.89.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夏伊发布了新的文献求助10
刚刚
ding应助Caesar采纳,获得10
1秒前
ll发布了新的文献求助30
2秒前
2秒前
CipherSage应助布丁采纳,获得10
2秒前
eleusis完成签到 ,获得积分10
2秒前
喜羊羊完成签到,获得积分10
2秒前
安静凡旋发布了新的文献求助10
4秒前
Jozee发布了新的文献求助10
5秒前
7秒前
大模型应助遗梦梦采纳,获得10
11秒前
爱的纠缠发布了新的文献求助20
14秒前
15秒前
15秒前
sjxbjrndkd完成签到 ,获得积分10
16秒前
franca2005完成签到,获得积分10
16秒前
youjiwuji发布了新的文献求助10
18秒前
科研通AI5应助寻风采纳,获得10
21秒前
22秒前
23秒前
XXH完成签到 ,获得积分10
23秒前
ding应助franca2005采纳,获得10
24秒前
27秒前
银河发布了新的文献求助10
27秒前
充电宝应助huanhuan采纳,获得10
27秒前
鳗鱼涵梅发布了新的文献求助10
28秒前
28秒前
Lucas应助聪明含桃采纳,获得10
29秒前
jjj发布了新的文献求助10
31秒前
yun完成签到,获得积分10
33秒前
完美世界发布了新的文献求助10
33秒前
李健的粉丝团团长应助ymy采纳,获得10
33秒前
zhangdanadn应助科研通管家采纳,获得10
33秒前
无花果应助科研通管家采纳,获得10
33秒前
CodeCraft应助科研通管家采纳,获得10
33秒前
华仔应助科研通管家采纳,获得10
33秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
研友_VZG7GZ应助科研通管家采纳,获得10
33秒前
传奇3应助科研通管家采纳,获得30
33秒前
桐桐应助科研通管家采纳,获得10
33秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800230
求助须知:如何正确求助?哪些是违规求助? 3345547
关于积分的说明 10325664
捐赠科研通 3061960
什么是DOI,文献DOI怎么找? 1680707
邀请新用户注册赠送积分活动 807182
科研通“疑难数据库(出版商)”最低求助积分说明 763547